首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rowson, B., Tattersfield, P. & Symondson, W. O. C. (2010). Phylogeny and biogeography of tropical carnivorous land‐snails (Pulmonata: Streptaxoidea) with particular reference to East Africa and the Indian Ocean. —Zoologica Scripta, 40, 85–98. A phylogeny is presented for the speciose, near pan‐tropical, carnivorous achatinoid land‐snail superfamily Streptaxoidea inferred from DNA sequences (two nuclear and two mitochondrial regions) from 114 taxa from Africa, the Indian Ocean, Asia, South America and Europe. In all analyses, Streptaxidae are monophyletic, while the (two to six) previously recognised subfamilies are polyphyletic, as are several genus‐level taxa including the most speciose genus Gulella, necessitating major taxonomic review. The Asian Diapheridae are sister to Streptaxidae, which forms several well‐supported clades originating in a persistent basal polytomy. Divergence dating estimates, historical biogeography, and the fossil context suggest a Cretaceous origin of these families, but suggest Gondwanan vicariance predated most radiation. The basal polytomy dates to the Paleogene and may correspond to a rapid radiation in Africa. There is evidence for multiple Cenozoic dispersals followed by radiation, including at least two from Africa to South America, at least two from Africa to Asia and at least two from Africa to Madagascar, indicating Cenozoic turnover in tropical snail faunas. The endemic Seychelles and Mascarene streptaxid faunas each are composites of early Cenozoic lineages and more recent dispersals from Africa, with no direct evidence for an Asian origin as currently proposed. Peak streptaxid diversity in East Africa is explained by Neogene speciation among a large number of coexisting ancient lineages, a phenomenon most pronounced in the Eastern Arc‐Coastal Forests centre of endemism. This includes Miocene diversification in Gulella, a primarily East and South‐East African group which remains strikingly diverse even after unrelated ‘Gulella’ species are reclassified.  相似文献   

2.
This paper examines the role of fire in mediating the relative abundance of two of the world's major ecologically dominant ant genera, Iridomyrmex and Oecophylla, where they coexist across the tropical savanna landscapes of northern Australia. These taxa have contrasting biogeographical histories, which are predicted to lead to contrasting responses to fire. Iridomyrmex is an autochthonous Australian genus that has radiated primarily in the arid zone; as such, its abundance is predicted to be promoted by frequent fire because this maintains an open habitat. In contrast, Oecophylla is a genus of leaf‐nesting ants occurring in the canopies of Old World tropical rainforest, and is a recent arrival to Australia in geological time; the abundance of these ants is predicted to decline under frequent fire. We test these predictions using results from a landscape‐scale fire experiment, where three experimental fire regimes (including no fire) were applied to replicated subcatchments over a 5‐year period. Using sweep nets, ants were sampled in the grass layer (the habitat layer of greatest overlap between Iridomyrmex and Oecophylla) in eucalypt woodland (canopy cover < 30%) and open eucalypt forest (canopy cover about 50%) habitats. A total of 27 species from 11 genera were collected during the study; eight were common enough for statistical analysis, and the abundances of four of these were significantly affected by fire treatment. As predicted, the abundance of Iridomyrmex was promoted by fire, whereas that of Oecophylla declined. These changes occurred only under late‐season (relatively high intensity) fires, and for Oecophylla occurred only in open forest (not woodland) habitat. This fire‐mediated relationship between Iridomyrmex and Oecophylla mirrors the much broader, ecosystem‐wide dynamic between eucalypt‐dominated savanna and rainforest in tropical Australia, with savannas dominated by fire‐resistant sclerophyll elements of Australian origin, and rainforest dominated by fire‐sensitive mesophyll elements of South‐East Asian origin.  相似文献   

3.
African Grass Rats of the genus Arvicanthis Lesson, 1842, are one of the most important groups of rodents in sub‐Saharan Africa. They are abundant in a variety of open habitats, they are major agricultural pests, and they became a popular model in physiological research because of their diurnal activity. Despite this importance, information about their taxonomy and distribution is unsatisfactory, especially in eastern Africa. In this study, we collected the most comprehensive multilocus DNA dataset to date across the geographic and taxonomic range of the genus (229 genotyped specimens from 130 localities in 16 countries belonging to all currently recognized species). We reconstructed phylogenetic relationships, mapped the distribution of major genetic clades, and used the combination of cytogenetic, nuclear, and mitochondrial markers for species delimitations and taxonomic suggestions. The genus is composed of two major evolutionary groups, called here the ANSORGEI and NILOTICUS groups. The former contains four presumed species, while the latter is more diverse and we recognized nine species. Most relationships among species are not resolved, which suggests a rapid radiation (dated to early–middle Pleistocene). Further, there is an indication of reticulate evolution in Ethiopia, that is, the region of the highest Arvicanthis diversity. The distribution of genetic diversity suggests diversification in eastern Africa, followed by repeated dispersals to the west (Sudano‐Guinean savannas) and to the south (Masai steppe). We propose nomenclatural changes for Ethiopian taxa and provide suggestions for future steps toward solving remaining taxonomic questions in the genus.  相似文献   

4.
A phylogeny of the genus Phlesirtes Bolivar is presented, based on new sequence data of three genes (16S rDNA, COI, H3). Species of the genus Phlesirtes (subtribe Karniellina of the Tribe Conocephalini) occupy habitats of montane to afroalpine grasslands in East Africa. Phlesirtes is the most species‐rich genus of the subtribe Karniellina, a group of small flightless Ensifera restricted to eastern Africa. Taken together, the biogeographical patterns seen in Phlesirtes and its molecular phylogeny suggest a migration scenario: the mountain ranges acting as stepping stones, enabling a spread of Phlesirtes ancestors during periods of favourable climatic conditions in the past. The Pleistocene inland volcanoes, such as Mt Kenya or Mt Kilimanjaro, allow us to date speciation processes within the genus Phlesirtes. It is suggested that cooler humid periods of the past 3 Ma boosted speciation of Phlesirtes in East Africa.  相似文献   

5.
Fire frequency is a key land management issue, particularly in tropical savannas where fire is widely used and fire recurrence times are often short. We used an extended Before‐After‐Control‐Impact design to examine the impacts of repeated wet‐season burning for weed control on bird assemblages in a tropical savanna in north Queensland, Australia. Experimentally replicated fire treatments (unburnt, singularly bunt, twice burnt), in two habitats (riparian and adjacent open woodland), were surveyed over 3 years (1 year before the second burn, 1 year post the second burn, 2 years post the second burn) to examine responses of birds to a rapid recurrence of fire. Following the second burn, species richness and overall bird abundance were lower in the twice‐burnt sites than either the unburnt or singularly burnt sites. Feeding group composition varied across year of survey, but within each year, feeding guilds grouped according to fire treatment. In particular, abundance of frugivores and insectivores was lower in twice‐burnt sites, probably because of the decline of a native shrub that produces fleshy fruits, Carissa ovata. Although broader climatic variability may ultimately determine overall bird assemblages, our results show that a short fire‐return interval will substantially influence bird responses at a local scale. Considering that fire is frequently used as a land management tool, our results emphasize the importance of determining appropriate fire‐free intervals.  相似文献   

6.
Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad , when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.  相似文献   

7.
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.  相似文献   

8.
The behavioral adaptations of primates to fire‐modified landscapes are of considerable interest to anthropologists because fire is fundamental to life in the African savanna—the setting in which genus Homo evolved. Here we report the behavioral responses of a savanna‐dwelling primate, vervet monkeys (Chlorocebus aethiops), to fire‐induced ecological change. Using behavioral and spatial data to characterize ranging patterns prior to and postburn and between burn and nonburn years, we show that these primates inhabiting small, spatially bound, riverine habitats take advantage of newly burned savanna landscapes. When subjects encountered controlled fires, they did not flee but instead avoided the path of the fire seemingly unbothered by its approach. After fire, the primates' home range expanded into newly burned but previously unused areas. These results contribute to understanding the response of non‐human primates to fire‐modified landscapes and can shed light on the nature and scope of opportunities and constraints posed by the emergence of fire‐affected landscapes in the past. Results also expose deficiencies in our knowledge of fire‐related behavioral responses in the primate lineage and highlight the need for further investigation of these responses as they relate to foraging opportunities, migration, resource use, and especially fire‐centric adaptations in our own genus. Am J Phys Anthropol 154:554–560, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The holomycotrophic terrestrial orchids of tropical Africa are reassessed. Two new species of Gastrodia from tropical Africa are described, G. rwandensis from Rwanda and G. ballii from south-central Africa. The genus now comprises three species in tropical Africa. A key is provided to distinguish them from Gastrodia africana Kraenzl.  相似文献   

10.
Phylogenies with even a rough time scale can be used to investigate the history of non‐volant taxa with disjunct distributions in widely separated land areas that were once connected. Basic methods for doing this are discussed. A partial phylogeny of Mabuya based on mtDNA (305 bp cytochrome b, 379 bp 12S rRNA and 388 bp 16S rRNA) is used to show that this genus invaded tropical America from Africa twice in the last 9 Myr, once reaching the American mainland and once the oceanic island of Fernando de Noronha, two journeys each of at least 3000 km. In general, phylogenetic evidence for multiple invasions is less equivocal than that suggesting a single invasion, which is more prone to sampling artefacts. Two alternative hypotheses explaining the presence of Mabuya in both Africa and tropical America are refuted on the basis of molecular clock considerations, namely that the occurrence of Mabuya in these continents pre‐dated their separation over 100 My ago and that it was introduced from one continent to the other by human activities. Like several other lizard groups that have made successful long‐distance transmarine colonizations, Mabuya has done this on many occasions. Phylogenetic results are also compatible with a SE Asian or Australasian origin of Mabuya followed by westward expansion.  相似文献   

11.
Fires burning the vast grasslands and savannas of Africa significantly influence the global carbon cycle. Projecting the impacts of future climate change on fire‐mediated biogeochemical processes in these dry tropical ecosystems requires understanding of how various climate factors influence regional fire regimes. To examine climate–vegetation–fire linkages in dry savanna, we conducted macroscopic and microscopic charcoal analysis on the sediments of the past 25 000 years from Lake Challa, a deep crater lake in equatorial East Africa. The charcoal‐inferred shifts in local and regional fire regimes were compared with previously published reconstructions of temperature, rainfall, seasonal drought severity, and vegetation dynamics to evaluate millennial‐scale drivers of fire occurrence. Our charcoal data indicate that fire in the dry lowland savanna of southeastern Kenya was not fuel‐limited during the Last Glacial Maximum (LGM) and Late Glacial, in contrast to many other regions throughout the world. Fire activity remained high at Lake Challa probably because the relatively high mean‐annual temperature (~22 °C) allowed productive C4 grasses with high water‐use efficiency to dominate the landscape. From the LGM through the middle Holocene, the relative importance of savanna burning in the region varied primarily in response to changes in rainfall and dry‐season length, which were controlled by orbital insolation forcing of tropical monsoon dynamics. The fuel limitation that characterizes the region's fire regime today appears to have begun around 5000–6000 years ago, when warmer interglacial conditions coincided with prolonged seasonal drought. Thus, insolation‐driven variation in the amount and seasonality of rainfall during the past 25 000 years altered the immediate controls on fire occurrence in the grass‐dominated savannas of eastern equatorial Africa. These results show that climatic impacts on dry‐savanna burning are heterogeneous through time, with important implications for efforts to anticipate future shifts in fire‐mediated ecosystem processes.  相似文献   

12.
13.
Begonia L. is one of the largest flowering plant genera, a ubiquitous component of many tropical forests and an economically important ornamental plant. In the present study, we address the early evolution of Begonia by generating molecular phylogenies from approximately 7000 bases of chloroplast DNA and approximately 6000 bases of mitochondrial DNA for each of 30 exemplar Begonia species. Broadscale biogeographic patterns found in the phylogenies, together with previously estimated divergence dates, indicated that extant Begonia lineages first diversified in Africa and then subsequently in America and Asia. The phylogenies also revealed that the closest African relatives of the American and Asian Begonia are seasonally‐adapted species. Moderate to strong incongruence between the phylogenies suggested that they differ genealogically. These differences could have been the result of either interspecific hybridization and/or incomplete lineage sorting. The results obtained in the present study provide a much needed genus‐wide framework for future evolutionary studies of this exceptionally diverse tropical genus. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 243–250.  相似文献   

14.
In ecosystems subject to regular canopy fires, woody species have evolved two general strategies of post‐fire regeneration. Seeder species are killed by fire and populations regenerate solely by post‐fire recruitment from a seed bank. Resprouter species survive fire and regenerate by vegetative regrowth from protected organs. Interestingly, the abundance of these strategies varies along environmental gradients and across regions. Two main hypotheses have been proposed to explain this spatial variation: the gap dependence and the environmental‐variability hypotheses. The gap‐dependence model predicts that seeders are favoured in sparse vegetation (vegetation gaps allowing effective post‐fire recruitment of seedlings), while resprouters are favoured in densely vegetated sites (seedlings being outcompeted by the rapid crown regrowth of resprouters). The environmental‐variability model predicts that seeders would prevail in reliable rainfall areas, whereas resprouters would be favoured in areas under highly variable rainfall that are prone to severe dry events (leading to high post‐fire seedling mortality). We tested these two models using distribution data, captured at the scale of quarter‐degree cells, for seeder and resprouter species of two speciose shrub genera (Aspalathus and Erica) common in fire‐prone fynbos ecosystems of the mediterranean‐climate part of the Cape Floristic Region. Contrary to the predictions of the gap‐dependence model, species number of both resprouters and seeders increased with values of the Normalized Difference Vegetation Index (a widely used surrogate for vegetation density), with a more marked increase for seeders. The predictions of the environmental‐variability hypothesis, by contrast, were not refuted by this study. Seeder and resprouter species of both genera showed highest richness in environments with high rainfall reliability. However, with decreasing reliability, seeder numbers dropped more quickly than those of resprouters. We conclude that the environmental‐variability model is better able to explain the abundance of woody seeder and resprouter species in Southern Hemisphere fire‐prone shrublands (fynbos and kwongan) than the gap‐dependence model.  相似文献   

15.
Coucals are large, predatory, primarily ground‐dwelling cuckoos of the genus Centropus, with 26 extant species ranging from Africa to Australia. Their evolutionary and biogeographical history are poorly understood and their fossil record almost non‐existent. Only one species (Centropus phasianinus) currently inhabits Australia, but there is now fossil evidence for at least three Pleistocene species. One of these (Centropus colossus) was described from south‐eastern Australia in 1985. Here we describe additional elements of this species from the same site, and remains of two further extinct species from the Thylacoleo Caves of the Nullarbor Plain, south‐central Australia. The skeletal morphology and large size of the three extinct species indicates that they had reduced capacity for flight and were probably primarily ground‐dwelling. The extinct species include the two largest‐known cuckoos, weighing upwards of 1 kg each. They demonstrate that gigantism in this lineage has been more marked in a continental context than on islands, contrary to the impression gained from extant species. The evolutionary relationships of the Australian fossil coucals are uncertain, but our phylogenetic analysis indicates a possible close relationship between one of the Nullarbor species and extant Centropus violaceus from the Bismarck Archipelago. The presence of three coucals in southern Australia markedly extends the geographical range of the genus from tropical Australia into southern temperate regions. This demonstrates the remarkable and consistent ability of coucals to colonize continents despite their very limited flying ability.  相似文献   

16.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

17.
The genus Crinum L. is the only pantropical genus of the Amaryllidaceae. Phylogenetic and biogeographical analyses of nrDNA ITS and plastid trnL-F sequences for all continental groups of the genus Crinum and related African genera are presented, with the genus Amaryllis used as outgroup. ITS indicates that C. baumii is more closely related to Ammocharis and Cybistetes than to Crinum sensu stricto . Three clades are resolved in Crinum s.s. One unites a monophyletic American group with tropical and North African species. The second includes all southern African species and the Australian endemic C. flaccidum . The third includes monophyletic Madagascar, Australasian and Sino-Himalayan clades, with southern African species. The trnL-F phylogeny resolves an American and an Asian/Madagscar clade, and confirms the relationship of C. flaccidum with species endemic to southern Africa. The salverform, actinomorphic perianths of subg. Crinum appear to have evolved several times in the genus from ancestors with zygomorphic perianths (subg. Codonocrinum ), thus neither subgenus is monophyletic. Biogeographical analyses place the origin of Crinum in southern Africa, as the region is optimized at all ancestral nodes in the tree topology, and in basal interior nodes of all but one of the major clades. The genus underwent three major waves of radiation corresponding to the three main clades resolved in our trees. Two entries into Australia for the genus are indicated, as are separate Sino-Himalayan and Australasian dispersal events.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 141 , 349–363.  相似文献   

18.
Thirty-two species of Cladocera and 27 species of free-living copepods were identified in a series of samples collected in 25 localities in and around the Fouta Djalon mountains, West Africa. Beside great richness in numbers of species, the nature of the fauna is noteworthy: at least 20% of the Cladocera and 50% of the copepods are endemic to West Africa. Possible palaeoclimatological reasons for this are discussed. The cladoceran genus Streblocerus is recorded from Africa for the first time. It is an element of northern origin in the fauna of West Africa. More examples of this kind are documented among the Copepoda Cyclopoida and Harpacticoida, but the bulk of the fauna is evidently of tropical origin. In particular, great adaptive radiation is occurring in the local representatives of the genus Tropocyclops. Three new species of Parastenocaris are described; they are the first representatives of this genus found in West Africa.  相似文献   

19.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

20.
The paleoenvironmental context of plant and animal species evolution (including glacial migrations and population separations) is based on a very patchy and incomplete paleo‐phytogeographic record. It was our objective, therefore, to provide an additional source for paleovegetation comparison by presenting simulations from a state‐of‐the‐art fully coupled earth system model (HadCM3LC). We simulated potential paleovegetation distributions following pre‐Industrial and last glacial maximum (LGM) climate forcing for the continent of Africa. Our LGM simulations indicate that tropical broadleaf forest was not severely displaced by expanding grasslands within central Africa, although the outer extent of closed forest decreases, particularly in the north. Our simulations indicate that the structure of glacial forests may have been much different from today, in that LGM simulations indicate that forests were likely characterized by lower leaf area indexes, lower tree heights and lower vegetation carbon content. On the other hand, warmer interglacial climate (like our pre‐Industrial climate scenario) results in simulated expansion of tropical forest from coast to coast across central Africa that we postulate could have acted as a barrier to plant and animal species migrations. We suggest that our modeling experiments have implications for the interpretation of phylogenetic data, including that of our own species, Homo sapiens sapiens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号