共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuichi Nakahara Kanako Mitsumasu Ken-ichi Iwata Masahiko Watanabe Takashi Okuda 《Cryobiology》2010,60(2):138-146
Dry-preservation of nucleated cells from multicellular animals represents a significant challenge in life science. As anhydrobionts can tolerate a desiccated state, their cells and organs are expected to show high desiccation tolerance in vitro. In the present study, we established cell lines derived from embryonic tissues of an anhydrobiotic chironomid, Polypedilum vanderplanki, designated as Pv11 and Pv210. Salinity stress induced the expression of a set of anhydrobiosis-related genes in both Pv11 and Pv210 cells, suggesting that at least a part of cells can autonomously control the physiological changes for the entry into anhydrobiosis. When desiccated with medium supplemented with 300 mM trehalose or sucrose and stored for 4 weeks in dry air (approximately 5% relative humidity), a small percentage of the cells was found to be viable upon rehydration, although surviving cells seemed not to be able to multiply. We also attempted dry-preservation of organs isolated from P. vanderplanki larvae, and found that a proportion of cells in some organs, including fat body, testis, nerve and dorsal vessel, tolerated in vitro desiccation. 相似文献
2.
Aquaporin, AQP, is a channel protein that allows water to permeate across cell membranes. Larvae of the sleeping chironomid, Polypedilum vanderplanki, can withstand complete dehydration by entering anhydrobiosis, a state of suspended animation; however, the mechanism by which water flows out of the larval body during dehydration is still unclear. We isolated two cDNAs (PvAqp1 and PvAqp2) encoding water-selective aquaporins from the chironomid. When expressed in Xenopus oocytes, PvAQP1 and PvAQP2 facilitated permeation of water but not glycerol. Northern blots and in situ hybridization showed that expression of PvAqp1 was dehydration-inducible and ubiquitous whereas that of PvAqp2 was dehydration-repressive and fat body-specific. These data suggest distinct roles for these aquaporins in P. vanderplanki, i.e., PvAqp2 controls water homeostasis of fat body during normal conditions and PvAqp1 is involved in the removal of water during induction of anhydrobiosis. 相似文献
3.
Nakahara Y Watanabe M Fujita A Kanamori Y Tanaka D Iwata K Furuki T Sakurai M Kikawada T Okuda T 《Journal of insect physiology》2008,54(8):1220-1225
Strategies to combat desiccation are critical for organisms living in arid and semi-arid areas. Larvae of the Australian chironomid Paraborniella tonnoiri resist desiccation by reducing water loss. In contrast, larvae of the African species Polypedilum vanderplanki can withstand almost complete dehydration, referred to as anhydrobiosis. For successful anhydrobiosis, the dehydration rate of P. vanderplanki larvae has to be controlled. Here, we desiccated larvae by exposing them to different drying regimes, each progressing from high to low relative humidity, and examined survival after rehydration. In larvae of P. vanderplanki, reactions following desiccation can be categorized as follows: (I) no recovery at all (direct death), (II) dying by unrepairable damages after rehydration (delayed death), and (III) full recovery (successful anhydrobiosis). Initial conditions of desiccation severely affected survival following rehydration, i.e. P. vanderplanki preferred 100% relative humidity where body water content decreased slightly. In subsequent conditions, unfavorable dehydration rate, such as more than 0.7 mg water lost per day, resulted in markedly decreased survival rate of rehydrated larvae. Slow dehydration may be required for the synthesis and distribution of essential molecules for anhydrobiosis. Larvae desiccated at or above maximum tolerable rates sometimes showed temporary recovery but died soon after. 相似文献
4.
5.
Watanabe M Nakahara Y Sakashita T Kikawada T Fujita A Hamada N Horikawa DD Wada S Kobayashi Y Okuda T 《Journal of insect physiology》2007,53(6):573-579
High tolerance against various extreme environments exhibited by some anhydrobionts might be due to being almost completely desiccated, a state where little or no chemical reactions occur. We have shown that anhydrobiotic larvae of Polypedilum vanderplanki have higher tolerance against both high- and low-linear energy transfer (LET) radiation than hydrated larvae. It is of great interest to know how the desiccating larvae gain radiation tolerance. We therefore examined effects of high-LET radiation on four kinds of larvae: (1) normal hydrated (intact) larva, (2) intermediates between the anhydrobiotic and normal hydrated state, (3) almost completely dehydrated (anhydrobiotic) larvae, and (4) immediately rehydrated larvae that are assumed to have a similar molecular profile to anhydrobiotic larvae. The intermediates and immediately rehydrated larvae survived longer after high-LET radiation than intact larvae, indicating that radiation tolerance could be enhanced even in hydrated larvae. Physiological changes toward anhydrobiosis, e.g. accumulation of protectants or increasing damage repair capacity, correlate with improved radiation tolerance in hydrated larvae. In addition, almost complete desiccation further enhanced radiation tolerance, possibly in a different way from the hydrated larvae. 相似文献
6.
Takao Furuki Tatsuya Niwa Hideki Taguchi Rie Hatanaka Takahiro Kikawada Minoru Sakurai 《Biochemistry and Biophysics Reports》2019
We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide. 相似文献
7.
The larva of the African chironomid Polypedilum vanderplanki can withstand complete desiccation. Our previous reports revealed that even when the larva is dehydrated without a brain, it accumulated a great amount of trehalose and successfully went into anhydrobiosis. In this paper we determined the viability after rehydration in tissues from the larvae followed by complete dehydration. Only fat-body tissues that were the main producer of trehalose could be preserved in a dry state at room temperature for an extended period of more than 18 months in a viable form. Thus we have confirmed that the central nervous system is not involved in the induction of anhydrobiosis, even in this complex multicellular organism. 相似文献
8.
Late embryogenesis abundant (LEA) proteins are accumulated by anhydrobiotic organisms in response to desiccation and improve survivorship during water stress. In this study we provide the first direct evidence for the subcellular localizations of AfrLEA2 and AfrLEA3m (and its subforms) in anhydrobiotic embryos of Artemia franciscana. Immunohistochemistry shows AfrLEA2 to reside in the cytoplasm and nucleus, and the four AfrLEA3m proteins to be localized to the mitochondrion. Cellular locations are supported by Western blots of mitochondrial, nuclear and cytoplasmic fractions. The presence of LEA proteins in multiple subcellular compartments of A. franciscana embryos suggests the need to protect biological structures in many areas of a cell in order for an organism to survive desiccation stress, and may explain in part why a multitude of different LEA proteins are expressed by a single organism. 相似文献
9.
Simon Neumann Andy Reuner Franz Brümmer Ralph O. Schill 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,153(4):425-429
In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 ± 1.98% DNA in tail, compared to 0.44 ± 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 ± 6.41% of DNA was found in the comet tail. After ten months, 23.66 ± 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation. 相似文献
10.
We investigated whether a model peptide for group 3 LEA (G3LEA) proteins we developed in previous studies can protect liposomes from desiccation damage. Four different peptides were compared: 1) PvLEA-22, which consists of two tandem repeats of the 11-mer motif characteristic of LEA proteins from the African sleeping chironomid; 2) a peptide with amino acid composition identical to that of PvLEA-22, but with its sequence scrambled; 3) poly-l-glutamic acid; and 4) poly-l-lysine. Peptides 1) and 2) protected liposomes composed of 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) against fusion caused by desiccation, as revealed by particle size distribution measurements with dynamic light scattering. Indeed, liposomes maintain their pre-stress size distribution when these peptides are added at a peptide/POPC molar ratio of more than 0.5. Interestingly, peptide 1) achieved the comparable or higher retention of a fluorescent probe inside liposomes than did several native LEA proteins published previously. In contrast, the other peptides exhibited less protective effects. These results demonstrate that the synthetic peptide derived from the G3LEA protein sequence can suppress desiccation-induced liposome fusion. Fourier transform infrared (FT-IR) spectroscopic measurements were performed for the dried mixture of each peptide and liposome. Based on results for the gel-to-liquid crystalline phase transition temperature of the liposome and the secondary structure of the peptide backbone, we discuss possible underlying mechanisms for the protection effect of the synthetic peptide on dried liposomes. 相似文献
11.
12.
有研究表明,干旱、低温和盐等环境胁迫能够诱导LEA基因的表达。为了探索LEA基因家族在高粱响应外界刺激过程中起到的作用,本研究通过生物信息学的方法对LEA基因家族在高粱全基因组水平进行鉴定和分析,于高粱全基因组中共鉴定出35个基因家族成员,不均匀地分布于高粱8条染色体上,结合系统进化树和保守结构域分析结果,将高粱LEA基因家族成员分为7组。亲水性分析和结构无序性预测表明高粱LEA蛋白绝大多数为亲水性且结构无序。基因结构分析显示了各分组基因结构上的保守性。高粱LEA基因的启动子分析发现了一些与激素和非生物胁迫响应相关的顺式作用元件。对激素和干旱胁迫下高粱LEA基因的表达分析发现外界胁迫能够诱导部分高粱LEA基因的表达。 相似文献
13.
Simon Bahrndorff Alan Tunnacliffe Brian McGee Volker Loeschcke 《Journal of insect physiology》2009,55(3):210-217
Humidity has a large impact on the distribution and abundance of terrestrial invertebrates, but the molecular mechanisms governing drought resistance are not fully understood. Some attention has been given to the role of the heat shock response as a component of desiccation tolerance, but recent focus has been on the chaperone-like LEA (late embryogenesis abundant) proteins in anhydrobiotic animals. This study investigates the expression of putative LEA proteins as well as the heat shock protein Hsp70 during drought stress in soil and surface dwelling species of Collembola (springtails). In silico analysis of four EST candidates from two species of Collembola showed the presence of a Group 3 LEA protein in Megaphorura arctica. In common with other Group 3 LEA proteins, the new sequence is predicted to be 100% natively unfolded, with a strong degree of lysine and alanine periodicity and with a negative average hydrophobicity of −1.273. The sequence clusters with members of the Group 3 LEA in plants. Furthermore, cross-species Western blotting showed drought-induced expression of putative LEA proteins in six species of Collembola. In the surface dwelling species, Orchesella cincta, degree of dehydration and length of exposure correlated with level of putative LEA protein. Hsp70 was also found to increase in individuals of O. cincta and Folsomia candida that had been exposed to drought conditions for 6 days. These results show the presence of a LEA protein-coding region in Collembola, but also indicate that several proteins are involved in response to dehydration stress, including Hsp70. 相似文献
14.
Alden H. Warner Zhi-hao Guo Sandra Moshi John W. Hudson Anna Kozarova 《Cell stress & chaperones》2016,21(1):139-154
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-015-0647-3) contains supplementary material, which is available to authorized users. 相似文献15.
The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae 总被引:12,自引:0,他引:12
The biased amino acid composition and aperiodic (random coil) configuration of Group 1 late embryogenesis-abundant (LEA) proteins imply that these proteins are capable of binding large amounts of water. While Group 1 LEAs have been predicted to contribute to osmotic stress protection in both embryonic and vegetative tissues, biochemical support has been lacking. We have used Saccharomyces cerevisiae as a model system to test the putative osmoprotective function of a wheat Group 1 LEA protein, Em. We demonstrate that expression of Em protein in yeast cells is not deleterious to growth in media of normal osmolarity and attenuates the growth inhibition normally observed in media of high osmolarity. Enhanced growth is observed in the presence of a variety of osmotically active compounds indicating that Em protein is capable of mitigating the detrimental effect of low water potential in a relatively non-specific manner. These results are the first biochemical demonstration of an osmoprotective function for a Group 1 LEA and suggest that the yeast expression system will be useful in dissecting the mechanism of protection through structure-function studies. 相似文献
16.
Goyal K Pinelli C Maslen SL Rastogi RK Stephens E Tunnacliffe A 《FEBS letters》2005,579(19):4093-4098
Late embryogenesis abundant (LEA) proteins occur in desiccation-tolerant organisms, including the nematode Aphelenchus avenae, and are thought to protect other proteins from aggregation. Surprisingly, expression of the LEA protein AavLEA1 in A. avenae is partially discordant with that of its gene: protein is present in hydrated animals despite low cognate mRNA levels. Moreover, on desiccation, when its gene is upregulated, AavLEA1 is specifically cleaved to discrete, smaller polypeptides. A processing activity was found in protein extracts of dehydrated, but not hydrated, nematodes, and main cleavage sites were mapped to 11-mer repeated motifs in the AavLEA1 sequence. Processed polypeptides retain function as protein anti-aggregants and we hypothesise that the expression pattern and cleavage of LEA protein allow rapid, maximal availability of active molecules to the dehydrating animal. 相似文献
17.
Production of recombinant proteins by yeast cells 总被引:2,自引:0,他引:2
Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe, Yarrowia lipolytica and Arxula adeninivorans, with various characteristics such as being thermo-tolerant or halo-tolerant, rapidly reaching high cell densities or utilizing unusual carbon sources. Several strains were also engineered to have further advantages, such as humanized glycosylation pathways or lack of proteases. Additionally, with a large variety of vectors, promoters and selection markers to choose from, combined with the accumulated knowledge on industrial-scale fermentation techniques and the current advances in the post-genomic technology, it is possible to design more cost-effective expression systems in order to meet the increasing demand for recombinant proteins and glycoproteins. In this review, the present status of the main and most promising yeast expression systems is discussed. 相似文献
18.
Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa 总被引:1,自引:0,他引:1
Chen J Cheng T Wang P Liu W Xiao J Yang Y Hu X Jiang Z Zhang S Shi J 《Journal of Proteomics》2012,75(17):5226-5243
Salinity is a major abiotic stress that inhibits plant growth and development. Plants have evolved complex adaptive mechanisms that respond to salinity stress. However, an understanding of how plants respond to salinity stress is far from being complete. In particular, how plants survive salinity stress via alterations to their intercellular metabolic networks and defense systems is largely unknown. To delineate the responses of Nitraria sphaerocarpa cell suspensions to salinity, changes in their protein expression patterns were characterized by a comparative proteomic approach. Cells that had been treated with 150 mM NaCl for 1, 3, 5, 7, or 9 days developed several stress-related phenotypes, including those affecting morphology and biochemical activities. Of ~1100 proteins detected in 2-DE gel patterns, 130 proteins showed differences in abundance with more than 1.5-fold when cells were stressed by salinity. All but one of these proteins was identified by MS and database searching. The 129 spots contained 111 different proteins, including those involved in signal transduction, cell rescue/defense, cytoskeleton and cell cycle, protein folding and assembly, which were the most significantly affected. Taken together, our results provide a foundation to understand the mechanism of salinity response. 相似文献
19.
胚胎发育晚期丰富蛋白(LEA蛋白)在自然条件下主要在种子发育晚期大量积累,植物LEA基因也在多种非生物胁迫下诱导表达。植物LEA蛋白是植物应对失水胁迫(包括干旱、盐碱、冷冻等)逆境的一种广泛存在的亲水性应答蛋白,具有很强的热稳定性。本论文就LEA蛋白的结构、分类、功能及抗逆性分子机制进行了概述与总结,为分离新的LEA蛋白成员,进行功能分析以及进一步发掘其潜在应用价值提供参考。 相似文献
20.
G. Jyothsnakumari M. Thippeswamy G. Veeranagamallaiah C. Sudhakar 《Biologia Plantarum》2009,53(1):145-150
The relative water content (RWC), cell membrane integrity, protein pattern and the expression of late embryogenesis abundant
proteins (LEA; group 1, 2, 3 and 4) under different levels of salt stress (0, 1.0, 1.5 and 2.0 % NaCl) were investigated in
mulberry (Morus alba L.) cultivars (S1 and ATP) with contrasting salt tolerance. RWC and membrane integrity decreased with increase in NaCl concentration
more in cv. ATP than in cv. S1. SDS-PAGE protein profile of mulberry leaves after the NaCl treatments showed a significant
increase in 35, 41, 45 and 70 kDa proteins and significant decrease in 14.3, 18, 23, 28, 30, 42, 47 and 65 kDa proteins. Exposure
of plants to NaCl resulted in higher accumulation of LEA proteins in S1 than ATP. The maximum content of LEA (group 3 and
4) was detected in S1 at 2.0 % NaCl, which correlates with its salt tolerance. 相似文献