首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术进行近交系小鼠遗传监测。应用双色荧光杂交芯片技术对4个品系近交系小鼠的多个基因组DNA 样本进行SNP分型,整合6个SNP位点的芯片杂交信息,对样本所属品系进行判断。研究结果表明SNP检测方法-双色荧光杂交芯片技术能够对选定的6个SNP位点进行高准确率分型;双色荧光杂交芯片技术是一种高通量SNP检测的良好工具,适合于对少量近交系品系来源的大样本量小鼠进行遗传污染监测和品系鉴定,并具有扩大应用的潜力。  相似文献   

2.
双色荧光杂交芯片在近交系小鼠遗传监测中的应用   总被引:2,自引:0,他引:2  
应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术进行近交系小鼠遗传监测。应用双色荧光杂交芯片技术对4个品系近交系小鼠的多个基因组DNA样本进行SNP分型,整合6个SNP位点的芯片杂交信息,对样本所属品系进行判断。研究结果表明SNP检测方法-双色荧光杂交芯片技术能够对选定的6个SNP位点进行高准确率分型;双色荧光杂交芯片技术是一种高通量SNP检测的良好工具,适合于对少量近交系品系来源的大样本量小鼠进行遗传污染监测和品系鉴定,并具有扩大应用的潜力。  相似文献   

3.
目的:应用一种高通量单核苷酸多态性(SNP)检测方法——SNPstream技术检测甘露聚糖结合凝集素相关丝氨酸蛋白酶-2(MASP2)基因的多态性。方法:收集北京汉族人群SARS病例96例和正常对照96例,用SNPstream技术检测样本的MASP2基因多态性,并用PCR产物直接测序技术对其中一个位点rs2273346进行分型,以验证SNPstream技术的准确性。结果:192例样本的MASP2基因rs2273346位点SNPstream技术分型结果与测序结果完全相符,2种方法的基因型分型结果具有很好的一致性。结论:SNPstream技术是高通量SNP检测的良好工具,准确性高,所需样本量低,在大规模人群SNP筛检中具有良好的发展前景。  相似文献   

4.
目的:评估TaqMan-MGB探针基因分型方法检测已知SNP的可行性,并与传统的PCR-RFLP方法比较。方法:高通量的TaqMan-MGB探针基因分型方法已被用来检测单核苷酸多态性(SNP)。在321倒样本中,同时用TaqMan-MGB探针基因分型方法和PCR—RFLP方法检测GSTP1外显子5SNP。结果:2种方法所得结果完全一致。野生型(AA)226例(70.4%),杂合子(AG)92例(28.7%),纯合突变型3例(O.9%)。结论:TaqMan-MGB探针基因分型方法是一种能快速、高度特异性、高度自动化检测SNP的方法。可用于大规模的基因分型。  相似文献   

5.
目的探讨采用单核苷酸多态性(SNP)检测方法-双色荧光正相杂交芯片技术对近交系小鼠遗传质量监测及相关影响因素。方法运用基于芯片的双色荧光正相杂交检测SNP技术,进行芯片杂交动力学研究,考察信号值(Cy3,Cy5)和ratio值(Cy5/Cy3)与PCR产物点样浓度、PCR产物长度和荧光标记探针长度之间的关系,研究PCR产物点样浓度、PCR产物长度和荧光标记探针长度对SNP分型的影响。结果采用正反标记实验后,Ratio值随着PCR产物点样浓度的增加呈稳定趋势;PCR双链产物长度对信号值影响比较大,点样时其长度不宜太长,最好不超过450 bp;随荧光标记探针长度的增加,基因分型能力明显下降,长度为15 bp最佳,长度超过20 bp时,已基本没有区分能力。结论PCR产物点样浓度、PCR产物长度和荧光标记探针长度是双色荧光正相杂交SNP分型系统的重要影响因素,采取适当的PCR产物点样浓度、PCR产物长度和荧光标记探针长度,并采用正反标记实验,可以取得稳定、准确的基因分型效果。为进一步进行近交系小鼠遗传质量监测的研究奠定基础。  相似文献   

6.
单核苷酸多态性(single nucleotide polymorphism,SNP)在对复杂疾病遗传易感性以及基于群体基因识别等方面的研究中起着非常重要的作用,尤其是对复杂疾病遗传易感性的研究,需要对大量样本进行分型.为了满足这种要求,亟待需要发展一种操作简单、成本较低、适于自动化和高通量的分型技术.利用磁性颗粒"在位"固相PCR(insituMPs-PCR)扩增的靶序列,通过与野生、突变标签探针以及双色荧光(Cy3,Cy5)通用检测子杂交实现对样本的分型.应用该方法,对96个样本的亚甲基四氢叶酸还原酶(MTHFR)基因C677T位点的多态性进行了检测,其野生型和突变型样本的正错配信号比大于4.5,杂合型正错配信号比接近1,分型结果与测序结果一致.  相似文献   

7.
目的:建立HBV基因分型高通量液相芯片检测技术,并探讨其应用价值.方法:对GenBank中收录的明确分型的HBV基因序列进行分析,选择preS2-S区设计引物和A、B、C和D型特异性探针.与荧光编码微球偶联的特异型探针与一条引物生物素标记的PCR产物直接杂交反应,然后结合亲和素标记的藻红蛋白,用流式检测仪(Bio-Plex 200)检测荧光信号.检测182份阳性乙肝患者血清DNA,其中35份样品检测结果与测序法比较.用B、C型质粒DNA倍比稀释及混合样品检测灵敏度来评估该方法.结果:建立了HBV基因分型的快速高通量液相芯片检测方法.182份患者血清检测结果为:B型占24.2% (44/182),C型占71.4%(130/182),D型为6.6 %(12/182),BC混合型4.4%(8/182).其中35份样本与测序法比较,除3份混合型测序法未检出外,其它32例结果均相同本方法的灵敏度检测下线为1×103 copies/mL.结论:应用悬液芯片技术进行乙肝病毒的基因分型分析,具有较好的特异性和较高的灵敏度,并有简便、灵活和高通量等优势.该检测系统不仅在科研中有广泛的前景,也有望成为临床推广的多重分子诊断和基因分型的新方法.  相似文献   

8.
:单核苷酸多态性(singlenucleotidepolymorphism,SNP)是指在基因组水平上由单个核苷酸的变异引起的一种DNA序列多态性。SNP作为第三代分子标记,具有数量多、分布广等特点,已成为人类后基因组时代的主要研究内容之一。单核苷酸多态性在医学研究、临床诊断、药物开发与合理用药、法医学、遗传学的发展方面具有重要意义。因此,建立高度自动化和高通量的SNP检测分析技术十分重要。各种SNP分型检测方法都由等位基因特异性的识别反应和等住基因识别产物的分析检测两个部分组成。本文系统的介绍了引物延伸反应、序列杂交反应、酶连接反应、酶切割反应、核酸链构象差异反应等SNP检测的等位基因特异性的识别原理,以及质谱、荧光共振和偏振信号、化学发光、毛细管电泳测序、生物传感器等分析检测手段,并简要介绍了相关识别原理和分析检测手段的优缺点及应用范围,并对SNP检测技术的发展进行了展望。  相似文献   

9.
为开发针对大规模样本、低通量位点的单核苷酸多态性(Single nucleotide polymorphism, SNP)分型技术,研究依据虹鳟高通量SNP芯片检测鲑科4个属不同物种群体样本的结果,筛选获得了96个高质量共享多态性位点,应用Fluidigm 96.96微流控动态芯片平台,构建了用于鲑科物种增殖放流个体识别的SNP分型系统。以细鳞鲑为例评估芯片分型结果可靠性,分型成功率为98.63%,与Affymetrix高通量芯片分型一致性达到97.92%。基于该芯片分型结果,使用CERVUS 3.0.7软件对96尾细鳞鲑子代样本及其候选亲本和干扰亲本进行亲权鉴定,结果能够准确重现复杂家系的真实系谱,在用于单亲本亲权鉴定时,第一亲本非排除率(Nonexclusion probability for first parent, NE-1P)为4.362×10–4,用于双亲本亲权鉴定时,双亲非排除率(Nonexclusion probability for parent pair, NE-PP)为6.538×10–12,完全满足增殖放流回捕个体分...  相似文献   

10.
检测绵羊BMPR-IB基因多态性寡核苷酸芯片的制备   总被引:1,自引:0,他引:1  
杨华  钟发刚  王新华  刘守仁  朱滨  邢军芬  孙悦 《遗传》2007,29(8):957-962
FecB基因是控制中国美利奴羊排卵率和产羔数的主效基因,由于A746G的点突变而导致绵羊表型的变化。本研究的目的在于根据FecB基因的多态性,制备寡核苷酸芯片检测绵羊FecB基因的单核苷酸多态性(SNP),设计六条特异性的探针,用基因芯片点样仪将探针点样到醛基修饰的载玻片上,采集绵羊的血液样本,在芯片反应舱中,检测FecB基因A746G点突变,设计对应的软件进行判读,分析检测结果,与PCR-RFLP检测结果完全符合,证明制备的寡核苷酸芯片可以并行、准确而高效地检测FecB基因的多态性,能够作为分子标记辅助选育多胎绵羊的一种合适的检测技术。  相似文献   

11.
A high-throughput and cost-effective single-nucleotide polymorphism (SNP) genotyping method based on a gold magnetic nanoparticle (GMNP) array with dual-color hybridization has been designed. Biotinylated single-strand polymerase chain reaction (PCR) products containing the SNP locus were captured by the GMNPs that were coated with streptavidin. The GMNP array was fabricated by immobilizing single-stranded DNA (ssDNA)-GMNP complexes onto a glass slide using a magnetic field, and SNPs were identified with dual-color fluorescence hybridization. Three different SNP loci from 24 samples were genotyped successfully using this platform. This procedure allows the user to directly analyze the bead fluorescence to determine the SNP genotype, and it eliminates the need for background subtraction for signal determination. This method also bypasses tedious PCR purification and concentration procedures, and it facilitates large-scale SNP studies by using a method that is highly sensitive, simple, labor-saving, and potentially automatable.  相似文献   

12.
Ji M  Hou P  Li S  He N  Lu Z 《Mutation research》2004,548(1-2):97-105
Screening disease-related single nucleotide polymorphism (SNP) markers in the whole genome has great potential in complex disease genetics and pharmacogenetics researches. It has led to a requirement for high-throughput genotyping platforms that can maximize the efficient screening functional SNPs with respect to accuracy, speed and cost. In this study, we attempted to develop a microarray-based method for scoring a number of genomic DNA in parallel for one or more molecular markers on a glass slide. Two SNP markers localized to the methylenetetrahydrofolate reductase gene (MTHFR) were selected as the investigated targets. Amplified PCR products from nine genomic DNA specimens were spotted and immobilized onto a poly-l-lysine coated glass slide to fabricate a microarray, then interrogated by hybridization with dual-color probes to determine the SNP genotype of each sample. The results indicated that the microarray-based method could determine the genotype of 677 and 1298 MTHFR polymorphisms. Sequencing was performed to validate these results. Our experiments successfully demonstrate that PCR products subjected to dual-color hybridization on a microarray could be applied as a useful and a high-throughput tool to analyze molecular markers.  相似文献   

13.
14.
Fu G  Miles A  Alphey L 《PloS one》2012,7(1):e30340
Probe-based PCR is widely used for SNP (single nucleotide polymorphism) genotyping and pathogen nucleic acid detection due to its simplicity, sensitivity and cost-effectiveness. However, the multiplex capability of hydrolysis probe-based PCR is normally limited to one target (pathogen or allele) per fluorescence channel. Current fluorescence PCR machines typically have 4–6 channels. We present a strategy permitting the multiplex detection of multiple targets in a single detection channel. The technique is named Multiplex Probe Amplification (MPA). Polymorphisms of the CYP2C9 gene (cytochrome P450, family 2, subfamily C, polypeptide 9, CYP2C9*2) and human papillomavirus sequences HPV16, 18, 31, 52 and 59 were chosen as model targets for testing MPA. The allele status of the CYP2C9*2 determined by MPA was entirely concordant with the reference TaqMan® SNP Genotyping Assays. The four HPV strain sequences could be independently detected in a single fluorescence detection channel. The results validate the multiplex capacity, the simplicity and accuracy of MPA for SNP genotyping and multiplex detection using different probes labeled with the same fluorophore. The technique offers a new way to multiplex in a single detection channel of a closed-tube PCR.  相似文献   

15.
Liu H  Li S  Wang Z  Hou P  He Q  He N 《Biotechnology journal》2007,2(4):508-511
A novel approach for the genotyping of single nucleotide polymorphisms (SNPs) based on solidphase PCR on magnetic nanoparticles (MNPs) is described. PCR products were amplified directly on MNPs. The genotypes of a given SNP were differentiated by hybridization with a pair of allele-specific probes labeled with dual-color fluorescence (Cy3, Cy5). The results were analyzed by scanning the microarray printed with the denatured fluorescent probes on an unmodified glass slide. Electrophoresis analysis indicated that PCR could proceed successfully when MNPs-bound primers were used. Furthermore, nine different samples were genotyped and their fluorescent signals were quantified. Genotyping results showed that three genotypes for the locus were very easily discriminated. The fluorescent ratios (match probe:mismatch probe signal) of homozygous samples were over 9.3, whereas heterozygous samples had ratios near 1.0. Without any purification and concentration of PCR products, this new MNP-PCR based genotyping assay potentially provides a rapid, labor-saving method for genotyping of a large number of individuals.  相似文献   

16.
Liu H  Li S  Wang Z  Ji M  Nie L  He N 《Journal of biotechnology》2007,131(3):217-222
Single-nucleotide polymorphisms (SNPs) are one-base variations in DNA sequence that can often be helpful when trying to find genes responsible for inherited diseases. In this paper, a microarray-based method for typing single nucleotide polymorphisms (SNPs) using solid-phase polymerase chain reaction (PCR) on magnetic nanoparticles (MNPs) was developed. One primer with biotin-label was captured by streptavidin coated magnetic nanoparticles (SA-MNPs), and PCR products were directly amplified on the surface of SA-MNPs in a 96-well plate. The samples were interrogated by hybridization with a pair of dual-color probes to determine SNP, and then genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. The C677T polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene from 126 samples were interrogated using this method. The results showed that three different genotypes were discriminated by three fluorescence patterns on the microarray. Without any purification and reduction procedure, and all reactions can be performed in the same vessel, this approach will be a simple and labor-saving method for SNP genotyping and can be applicable towards the automation system to achieve high-throughput SNP detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号