首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown a dynamic karyotype evolution and the presence of complex sex chromosome systems in three cryptic Leptidea species from the Western Palearctic. To further explore the chromosomal particularities of Leptidea butterflies, we examined the karyotype of an Eastern Palearctic species, Leptidea amurensis. We found a high number of chromosomes that differed between the sexes and slightly varied in females (i.e. 2n = 118–119 in females and 2n = 122 in males). The analysis of female meiotic chromosomes revealed multiple sex chromosomes with three W and six Z chromosomes. The curious sex chromosome constitution [i.e. W1–3/Z1–6 (females) and Z1–6/Z1–6 (males)] and the observed heterozygotes for a chromosomal fusion are together responsible for the sex‐specific and intraspecific variability in chromosome numbers. However, in contrast to the Western Palearctic Leptidea species, the single chromosomal fusion and static distribution of cytogenetic markers (18S rDNA and H3 histone genes) suggest that the karyotype of L. amurensis is stable. The data obtained for four Leptidea species suggest that the multiple sex chromosome system, although different among species, is a common feature of the genus Leptidea. Furthermore, inter‐ and intraspecific variations in chromosome numbers and the complex meiotic pairing of these multiple sex chromosomes indicate the role of chromosomal fissions, fusions, and translocations in the karyotype evolution of Leptidea butterflies.  相似文献   

2.
Thirty-three populations belonging to the three Retama species, Retama monosperma, Retama raetam and Retama sphaerocarpa, were collected to study species differentiation using flow cytometry for 2C DNA assessment and molecular cytogenetics for karyotype organisation. All were 2n = 48. Genome size ranged from 1.76 to 1.97 pg and revealed significant intraspecific variation correlated to the geographic distribution of the populations. The number and position of the two ribosomal gene families 5S and 45S were determined by fluorescent in situ hybridization, revealing chromosome reorganisation between species. In R. raetam and R. monosperma, the minor 5S loci co-localised with 45S on the satellite chromosome pair. Fluorochrome banding identified GC- and AT-rich DNA regions. In R. monosperma a unique chromomycin positive GC-rich band was observed associated with the secondary constriction. In contrast, an original pattern showing two chromomycin positive bands localised at each side of the extended rDNA locus was observed in R. sphaerocarpa and R. raetam. The polymorphism revealed in our cytogenetic data allowed us to separate the group of R. raetam and R. monosperma from R. sphaerocarpa.  相似文献   

3.
Sisyrinchium micranthum and S. rosulatum are part of a species complex in which S. micranthum displays considerable morphological variation. S. rosulatum is a tetraploid species, whereas S. micranthum plants may present three different ploidy levels (2x, 4x, and 6x), so that polyploidy might have an important role in the diversification of this group. Notwithstanding, most cytogenetic studies on these species are based on chromosome counting. Aiming to understand how polyploidy may have impacted the genomes of these species, the DNA content of 184 specimens was estimated; fluorochrome banding with chromomycin A3 and fluorescent in situ hybridization using an 18S-5.8S-26S ribosomal DNA (rDNA) probe were also performed. The results showed a reduction in monoploid genome size (1Cx), as well as in the number of heterochromatin bands and rDNA sites per monoploid genome, from diploids to polyploids. Additionally, intraspecific and within-ploidy variations in genome size and number of rDNA sites were observed. The source of varying structure in genome organization of these plants may be the multiple independent formations of polyploids along with an ongoing diploidization process. However, the intraspecific and within-ploidy polymorphisms indicate genetic mechanisms other than genome duplication and diploidization to be important to the genome evolution of these taxa.  相似文献   

4.
Eight taxa of the genus Bellevalia (Hyacinthaceae) occurring in Greece, all with basic chromosome number x = 4, were cytologically studied using classical and molecular-cytogenetic techniques [fluorochrome banding with chromomycin A3, fluorescence in situ hybridization (FISH) using probes of 18S–5.8S–26S and 5S ribosomal RNA genes]. Two of the examined taxa are endemic, i.e., B. brevipedicellata and B. sitiaca, both restricted to the Island of Kriti. B. hyacinthoides and B. edirnensis are Balkan endemics, and the four remaining taxa, i.e., B. dubia subsp. boissieri, B. trifoliata, B. romana, and B. ciliata, are more widely distributed Mediterranean elements. Genome size, estimated by flow cytometry, ranged from 18.59 to 53.38 pg. The results of fluorochrome banding and FISH are reported for the first time for the genus Bellevalia. Despite the morphological similarity of the chromosome complement, which is in accordance with the general “basic” Bellevalia karyotype formula, the karyotypes of the studied species are clearly distinguished by the number and position of GC-rich bands and ribosomal DNA (rDNA) loci, revealing clear interspecific differentiation among the taxa. Additionally, examination of the polyploid species B. sitiaca and B. edirnensis and populations of B. hyacinthoides and B. ciliata with different ploidy levels permits discussion about the origin of polyploids and the taxonomic relationships among the taxa.  相似文献   

5.
Abstract

Fluorescent in situ hybridisation (FISH) of 5S and 18S-5.8S-26S ribosomal DNA was carried out in two species of the genus Artemisia, belonging to the subgenera Artemisia (A. medioxima) and Absinthium (A. lagocephala), each one showing both low and high ploidy levels (2x, 4x and 16x, and 2x and 6x, respectively). Both species have a base chromosome number of x = 9. Linkage of both rDNA genes has been observed confirming previous results. Diploid A. lagocephala (2n = 18) shows three rDNA loci, and the hexaploid six. Also in A. medioxima, the number of rDNA loci does not increase in the proportion given by the ploidy level, and a relative loss is found. In this species, the diploid population shows two rDNA loci, the tetraploid four, and the hexaidecaploid has around 20. The results evidence a relative loss of rDNA loci and heterochromatin, a phenomenon that is more pronounced at higher ploidy levels. Nevertheless, the DAPI banding pattern of A. lagocephala does not follow this trend, as it shows a spectacular increase of heterochromatic bands at the hexaploid level. These results are discussed in the light of possible chromosome restructuring and gene silencing mechanisms that take place during polyploidy, and more especially allopolyploid formation.  相似文献   

6.
Background and Aims: Changes in chromosome structure and number play an importantrole in plant evolution. A system well-suited to studying differentmodes of chromosome evolution is the genus Hypochaeris (Asteraceae)with its centre of species' diversity in South America. AllSouth American species uniformly have a chromosome base numberof x = 4 combined with variation in rDNA number and distribution,and a high frequency of polyploidy. The aim of this paper isto assess directions and mechanisms of karyotype evolution inSouth American species by interpreting both newly obtained andprevious data concerning rDNA localization in a phylogeneticcontext. Methods: Eleven Hypochaeris species from 18 populations were studiedusing fluorescence in situ hybridization (FISH) with 35S and5S rDNA probes. A phylogenetic framework was established fromneighbour-net analysis of amplified fragment length polymorphism(AFLP) fingerprint data. Key Results: A single 5S rDNA locus is invariably found on the short armof chromosome 2. Using 35S rDNA loci, based on number (one ortwo) and localization (interstitial on the long arm of chromosome2, but sometimes lacking, and terminal or interstitial on theshort arm of chromosome 3, only very rarely lacking), sevenkaryotype groups can be distinguished; five of these includepolyploids. Karyotype groups with more than one species do notform monophyletic groups. Conclusions: Early evolution of Hypochaeris in South America was characterizedby considerable karyotype differentiation resulting from independentderivations from an ancestral karyotype. There was marked diversificationwith respect to the position and evolution of the 35S rDNA locuson chromosome 3, probably involving inversions and/or transpositions,and on chromosome 2 (rarely 3) concerning inactivation and loss.Among these different karyotype assemblages, the apargioidesgroup and its derivatives constitute by far the majority ofspecies.  相似文献   

7.
The subsection Asperae of genus Hydrangea L. (Hydrangeaceae) has been investigated for three reasons: several ambiguous classifications concerning Hydrangea aspera have been published, unexpected differences in genome size among seven accessions have been reported Cerbah et al. (Theor Appl Genet 103:45–51, 2001), and two atypical chromosome numbers (2n = 30 for Hydrangea involucrata and 2n = 34 for H. aspera) have been found when all other species of the genus present 2n = 36. Therefore, these two species and four subspecies of Hydrangea in all 29 accessions were analyzed for their genome size, chromosome number, and karyotype features. This investigation includes flow cytometric measurements of nuclear DNA content and bases composition (GC%), fluorochrome banding for detection of GC- and AT-rich DNA regions, and fluorescent in situ hybridisation (FISH) for chromosome mapping of 5 S and 18 S-5.8 S-26 S rDNA genes. In the H. aspera complex, the genome size ranged from 2.98 (subsp. sargentiana) to 4.67 pg/2C (subsp. aspera), an exceptional intraspecific variation of 1.57-fold. The mean base composition was 40.5% GC. Our report establishes the first karyotype for the species H. involucrata, and for the subspecies of H. aspera which indeed present different formulae, offering an element of discrimination. FISH and fluorochrome banding revealed the important differentiation between these two species (H. involucrata and H. aspera) and among four subspecies of the H. aspera complex. Our results are in agreement with the Chinese classification that places the groups Kawakami and Villosa as two different species: Hydrangea villosa Rehder and Hydrangea kawakami Hayata. This knowledge can contribute to effective germplasm management and horticultural use.  相似文献   

8.
The pattern of localization of the ribosomal genes was studied by means of fluorescence in situ hybridization in 39 species of the tribe Harpalini. Most of them show one pair of autosomes carrying the ribosomal genes in a distal position of a single chromosome arm. This pattern is hypothesized to be ancestral for the whole tribe. Both, chromosome number and the number and localization of rDNA loci, show little variation and are therefore of little phylogenetic value. Only in the subtribe Ditomina is there enough variation to characterize phyletic relationships. The stability of rDNA loci is even higher than the constancy of chromosome number, as most species of Ditomina (genera Dixus, Eocarterus, Carterus, Odontocarus and Ditomus) have the usual pair of autosomes with rDNA loci, in spite of remarkable differences in the diploid number. Only Dixus sphaerocephalus and Dixus clypeatus have two autosomal pairs with a fluorescent signal. These results do not support the hypothesis that the high chromosome numbers found within Ditomina are the result of polyploid change from the ancestral 2n = 37 karyotype of the tribe Harpalini. Chromosomal translocations or the presence of mobile genetic elements are plausible sources of the few cases of intraspecific polymorphism in the rDNA loci found in species of Harpalus.  相似文献   

9.
Dogroses represent an exceptional system for studying the effects of genome doubling and hybridization: their asymmetrical meiosis enables recombination in bi‐parentally inherited chromosomes but prevents it in maternally inherited ones. We employed fluorescent in situ hybridization, genome skimming, amplicon sequencing of genomic and cDNA as well as conventional cloning of nuclear ribosomal DNA in two phylogenetically distinct pentaploid (2n = 5x = 35) species, Rosa canina and Rosa inodora, and their naturally occurring reciprocal hybrids, Rosa dumalis (5x) and Rosa agrestis (5x, 6x). Both progenitor species differed in composition, meiotic behaviour and expression of rDNA loci: R. canina (five 18S and 5–8 5S loci) was dominated by the Canina ribotypes, but R. inodora (four 18S loci and 7–8 5S loci) by the Rubiginosa ribotype. The co‐localized 5S/18S loci occurred on either bivalent‐forming (R. canina) or univalent‐forming (R. inodora) chromosomes. Ribosomal DNA loci were additively inherited; however, the Canina ribotypes were dominantly expressed, even in genotypes with relatively low copy number of these genes. Moreover, we observed rDNA homogenization towards the paternally transmitted Canina ribotype in 6x R. agrestis. The here‐observed variation in arrangement and composition of rDNA types between R. canina and R. inodora suggests the involvement of different genomes in bivalent formation. This results supports the hypothesis that the asymmetrical meiosis arose at least twice by independent ancient hybridization events.  相似文献   

10.
The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair.  相似文献   

11.

Background  

Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis.  相似文献   

12.
  • Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution.
  • To do so, the GS (14 species), the karyotype – based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) – was characterised and analysed along with published data using phylogenetic approaches.
  • The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants – higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number.
  • Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution.
  相似文献   

13.
Passiflora edulis Sims is the most economically important species of the genus Passiflora. A new species was described recently, Passiflora cacaoensis Bernacci & Souza, which displayed morphologic characteristics very similar to P. edulis. Due to the need for delimitation of the two species, karyomorphological and banding analyses were carried out. Both species have 2n = 18, with the same karyotype formula 16 m + 2sm. There was variation between the species regarding the location of satellites and the width of chromosome pairs 2, 4 and 8. C banding revealed the presence of constitutive heterochromatin in the centromeric and telomeric regions of all chromosomes in both species. However, only in P. cacaoensis did chromosomes 3 and 9 have a large quantity of heterochromatin. Fluorochrome banding revealed CMA+ bands only in the satellites, but no DAPI+ bands. Fluorescence in situ hybridisation (FISH) showed that in P. cacaoensis the rDNA 5S probe is located in a single site in the subterminal position of the long arm of chromosome 5. However, for the rDNA 45S probe, two sites were detected in terminal positions of the long arms of chromosome 7, with a bigger and stronger signal, and of chromosome 9. According to the asymmetry index and the quantity of heterochromatin, P. cacaoensis is a more basal species than P. edulis. The cytogenetic data indicate that P. cacaoensis is closely related to P. edulis, but is a different species.  相似文献   

14.
Meiotic drive, the class of meiotic mechanisms that drive unequal segregation of alleles among gametes, may be an important force in karyotype evolution. Its role in holocentric organisms, whose chromosomes lack localized centromeres, is poorly understood. We crossed two individuals of Carex scoparia (Cyperaceae) with different chromosome numbers (2n = 33II = 66 × 2n = 32II = 64) to obtain F1 individuals, which we then self‐pollinated to obtain second‐generation (F2) crosses. RAD‐seq was performed for 191 individuals (including the parents, five F1 individuals and 184 F2 individuals). Our F2 linkage map based on stringent editing of the RAD‐seq data set yielded 32 linkage groups. In the final map, 865 loci were located on a linkage map of 3966.99 cM (linkage groups ranged from 24.39 to 193.31 cM in length and contained 5–51 loci each). Three linkage groups exhibit more loci under segregation distortion than expected by chance; within linkage groups, loci exhibiting segregation distortion are clustered. This finding implicates meiotic drive in the segregation of chromosome variants, suggesting that selection of chromosome variants in meiosis may contribute to the establishment and fixation of chromosome variants in Carex, which is renowned for high chromosomal and species diversity. This is an important finding as previous studies demonstrate that chromosome divergence may play a key role in differentiation and speciation in Carex.  相似文献   

15.
Gametoclonal variation that occurs in gametic cells in culture and is recovered in their regenerated derivatives has not been reported in potato (Solanum tuberosum L.). Based on a set of 24 differentiating phenotypic traits, canonical variates analysis genetically distinguished the androgenic (di)haploid (2n = 2x = 24) D4 from its tetraploid (2n = 4x = 48) anther-derived sibs and anther donor JTH/C-107. Nuclear microsatellite analysis over six polymorphic loci indicated that meiotic rearrangements and mutant alleles were primarily associated with the release of gametoclonal variation. The incidence of null alleles in D4 at the loci STACCAS3 and STM0031 was also indicative of mutations occurring within the priming sequence. Microsatellite results were supported by random amplified polymorphic DNA (RAPD) assays that characterized a total of 567 loci (bins) representing 4,258 amplified fragments. Sixty-five new RAPDs that were absent in the anther donor and in either of its parents, viz., S. phureja Juz. & Buk. IVP-35 and S. tuberosum cv. Kufri Jyoti were present in D4, indicating the occurrence of extensive recombinational events. The results have been discussed in the context of microsatellite null alleles providing the most conclusive evidence for gametoclonal variation.  相似文献   

16.
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long‐term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.  相似文献   

17.
Vanzela AL  Ruas CF  Oliveira MF  Ruas PM 《Genetica》2002,114(2):105-111
Comparative karyotype analyses of five diploid, two tetraploid, and three hexaploid species of Helianthuswere performed using Feulgen staining, Giemsa C and CMA3 (C-CMA) staining, and FISH with 45S rDNA probe. The karyotypes are composed by a basic number of x=17 with a predominance of meta- and submetacentric chromosome types. A polyploid series is associated with the basic number. Giemsa C- and C-CMA banding revealed terminal or interstitial heterochromatin according to the species, suggesting the existence of a mechanism that may be acting in the dispersion of heterochromatic segments in Helianthus. The nucleolar organizer regions were located at terminal chromosome positions by FISH with 45S rDNA probe. Diploid species presented four, six, and eight rDNA sites, tetraploid species showed eight sites and hexaploid species presented 12 rDNA sites. Karyomorphological differences include variation in number, size and chromosome morphology, suggesting that rearrangements involving small heterochromatic and rDNA segments played a major role in karyotype evolution.  相似文献   

18.
Eight populations of Mimosa caesalpiniifolia Benth. were investigated using a cytogenetic approach. Here, we describe for the first time details of the karyotype including chromosome morphology, physical mapping of chromomycin A3 (CMA) 4′,6-diamidino-2-phenylindole (DAPI) and silver staining of nucleolar organizer regions (Ag-NOR banding), as well as 45S rDNA sites. All populations studied showed karyotypes with 2n?=?2x?=?26 small metacentric and submetacentric chromosomes, although some individuals exhibited 2n?=?4x?=?52 chromosomes. Moreover, we observed putative additional B chromosomes in some populations. The CMA banding and fluorescent in situ hybridization techniques revealed NOR heteromorphism on the unique pair containing 45 rDNA site (chromosome 12) while the Ag-NOR banding indicated NORs on both cytotypes. Up to two and four nucleoli were observed, respectively, on individuals with 2n?=?2x?=?26 and 2n?=?4x?=?52 chromosomes and the differences in nucleolar size seems to be directly related to NOR heteromorphism in some individuals. The data present new and important information to understand karyotypic evolution of Mimosa and Fabaceae.  相似文献   

19.
The localization of 18S ribosomal RNA genes (rDNA) by fluorescence in situ hybridization (FISH) had been performed for some species of Paeonla. However, the pattern of 18S rDNA loci among populations Is Indistinct. In the present study, we localized 18S rDNA loci on meiotic or mitotic chromosomes of six populations of Paeonla obovata Maxim. (Paeonlaceae). Different numbers of rDNA loci were found with different diploid (2n=10) populations, namely eight (Lushl and Mt. JIuhua populations), 10 (Mt. Talbal population), and seven (Mt. Guandl population), whereas tetraplold (2n=20) populations were all found with 16 loci. Aii rDNA loci were mapped near teiomeres of mitotic chromosomes and there was no chromosome with two loci. The present results show that molecular cytological polymorphlsm exists among P. obovata diploid populations, Indicating that structural variations occurred frequently during the evolutionary history of this species, accompanied with differentiation among populations.  相似文献   

20.
The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, an-nuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that ‘CM334’ of annuum had three loci and ‘tabasco’ of frutescens had one locus. ‘CM334’-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from ‘CM334’ plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号