首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SERCA activity is required for timely progression through G1/S   总被引:2,自引:0,他引:2  
Changes in intracellular Ca2+ correlate with specific events in the cell cycle. Here we investigated the role of Ca2+ in the G1 phase. HEK 293 cells were arrested in mitosis and subjected to short-term treatments that alter Ca2+ homeostasis prior to their release into G1. Treatment with thapsigargin (TG), an irreversible inhibitor of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) lengthened the G1 phase. Moreover, TG treatment also resulted in a dramatic alteration in cellular morphology and attachment and in the reduction of MAPK activity and lower levels of cyclin D1 and cyclin E proteins. Treatments with reagents that transiently increase or decrease cytosolic Ca2+ or that temporarily inactivate SERCA did not alter any of the above parameters. Cells expressing a TG-resistant form of SERCA progressed normally through the G1/S transition after TG treatment. These results suggest that long-term SERCA inactivation affects cell cycle-dependent events and compromises progression through G1/S.  相似文献   

2.
Previous reports have shown that the N terminus of Cdt1 is required for its degradation during S phase (Li, X., Zhao, Q., Liao, R., Sun, P., and Wu, X. (2003) J. Biol. Chem. 278, 30854-30858; Nishitani, H., Lygerou, Z., and Nishimoto, T. (2004) J. Biol. Chem. 279, 30807-30816). The stabilization was attributed to deletion of the cyclin binding motif (Cy motif), which is required for its phosphorylation by cyclin-dependent kinases. Phosphorylated Cdt1 is subsequently recognized by the F-box protein Skp2 and targeted for proteasomal mediated degradation. Using phosphopeptide mapping and mutagenesis studies, we found that threonine 29 within the N terminus of Cdt1 is phosphorylated by Cdk2 and required for interaction with Skp2. However, threonine 29 and the Cy motif are not necessary for proteolysis of Cdt1 during S phase. Mutants of Cdt1 that do not stably associate with Skp2 or cyclins are still degraded in S phase to the same extent as wild type Cdt1, indicating that other determinants within the N terminus of Cdt1 are required for degrading Cdt1. We localized the region necessary for Cdt1 degradation to the first 32 residues. Overexpression of stable forms of Cdt1 significantly delayed entry into and completion of S phase, suggesting that failure to degrade Cdt1 prevents normal progression through S phase. In contrast, Cdt1 mutants that fail to interact with Skp2 and cyclins progress through S phase with similar kinetics as wild type Cdt1 but stimulate the re-replication caused by overexpressing Cdt1. Therefore, a Skp2-independent pathway that requires the N-terminal 32 residues of Cdt1 is critical for the degradation of Cdt1 in S phase, and this degradation is necessary for the optimum progression of cells through S phase.  相似文献   

3.
Polycomb group (PcG) proteins form two distinct complexes, PRC1 and PRC2, to regulate developmental target genes by maintaining the epigenetic state in cells. PRC2 methylates histone H3 at lysine 27 (H3K27), and PRC1 then recognizes methyl-H3K27 to form repressive chromatin. However, it remains unknown how PcG proteins maintain stable and plastic chromatin during cell division. Here we report that PcG-associated chromatin is reproduced in the G(1) phase in post-mitotic cells and is required for subsequent S phase progression. In dividing cells, H3K27 trimethylation (H3K27Me(3)) marked mitotic chromosome arms where PRC2 (Suz12 and Ezh2) co-existed, whereas PRC1 (Bmi1 and Pc2) appeared in distinct foci in the pericentromeric regions. As each PRC complex was increasingly assembled from mitosis to G(1) phase, PRC1 formed H3K27Me(3)-based chromatin intensively during middle and late G(1) phase; this chromatin was highly resistant to in situ nuclease treatment. Thus, the transition from mitosis to G(1) phase is crucial for PcG-mediated chromatin inheritance. Knockdown of Suz12 markedly reduced the amount of H3K27Me(3) on mitotic chromosomes, and as a consequence, PRC1 foci were not fully transmitted to post-mitotic daughter cells. S phase progression was markedly delayed in these Suz12-knockdown cells. The fact that PcG-associated chromatin is reproduced during post-mitotic G(1) phase suggests the possibility that PcG proteins enable their target chromatin to be remodeled in response to stimuli in the G(1) phase.  相似文献   

4.
During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra-S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.  相似文献   

5.
6.
7.
Common fragile sites are loci that form chromosome gaps or breaks when DNA synthesis is partially inhibited. Fragile sites are prone to deletions, translocations, and other rearrangements that can cause the inactivation of associated tumor suppressor genes in cancer cells. It was previously shown that ATR is critical to fragile-site stability and that ATR-deficient cells have greatly elevated fragile-site expression (A. M. Casper, P. Nghiem, M. F. Arlt, and T. W. Glover, Cell 111:779-789, 2002). Here we demonstrate that mouse and human cells deficient for BRCA1, due to mutation or knockdown by RNA interference, also have elevated fragile-site expression. We further show that BRCA1 functions in the induction of the G(2)/M checkpoint after aphidicolin-induced replication stalling and that this checkpoint function is involved in fragile-site stability. These data indicate that BRCA1 is important in fragile-site stability and that fragile sites are recognized by the G(2)/M checkpoint pathway, in which BRCA1 plays a key role. Furthermore, they suggest that mutations in BRCA1 or interacting proteins could lead to rearrangements at fragile sites in cancer cells.  相似文献   

8.
The mammalian spliceosome has mainly been studied using proteomics. The isolation and comparison of different splicing intermediates has revealed the dynamic association of more than 200 splicing factors with the spliceosome, relatively few of which have been studied in detail. Here, we report the characterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously uncharacterized protein found in some human spliceosomal fractions ( Jurica, M. S., and Moore, M. J. (2003) Mol. Cell 12, 5-14 ). We show that dMFAP1 binds directly to the Drosophila homologue of Prp38p (dPrp38), a tri-small nuclear ribonucleoprotein component ( Xie, J., Beickman, K., Otte, E., and Rymond, B. C. (1998) EMBO J. 17, 2938-2946 ), and is required for pre-mRNA processing. dMFAP1, like dPrp38, is essential for viability, and our in vivo data show that cells with reduced levels of dMFAP1 or dPrp38 proliferate more slowly than normal cells and undergo apoptosis. Consistent with this, double-stranded RNA-mediated depletion of dPrp38 or dMFAP1 causes cells to arrest in G(2)/M, and this is paralleled by a reduction in mRNA levels of the mitotic phosphatase string/cdc25. Interestingly double-stranded RNA-mediated depletion of a wide range of core splicing factors elicits a similar phenotype, suggesting that the observed G(2)/M arrest might be a general consequence of interfering with spliceosome function.  相似文献   

9.
10.
Protein ubiquitination is critical for numerous cellular functions, including DNA damage response pathways. Histones are the most abundant monoubiquitin conjugates in mammalian cells; however, the regulation and the function of monoubiquitinated H2A (uH2A) and H2B (uH2B) remain poorly understood. In particular, little is known about mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from uH2A/uH2B. Here we identify the ubiquitin-specific protease 3 USP3 as a deubiquitinating enzyme for uH2A and uH2B. USP3 dynamically associates with chromatin and deubiquitinates H2A/H2B in vivo. The ZnF-UBP domain of USP3 mediates uH2A-USP3 interaction. Functional ablation of USP3 by RNAi leads to delay of S phase progression and to accumulation of DNA breaks, with ensuing activation of DNA damage checkpoint pathways. In addition, we show that in response to ionizing radiation, (1) uH2A redistributes and colocalizes in gamma-H2AX DNA repair foci and (2) USP3 is required for full deubiquitination of ubiquitin-conjugates/uH2A and gamma-H2AX dephosphorylation. Our studies identify USP3 as a novel regulator of H2A and H2B ubiquitination, highlight its role in preventing replication stress, and suggest its involvement in the response to DNA double-strand breaks. Together, our results implicate USP3 as a novel chromatin modifier in the maintenance of genome integrity.  相似文献   

11.
12.
13.
BRCA2 is required for neurogenesis and suppression of medulloblastoma   总被引:3,自引:0,他引:3  
Defective DNA damage responses in the nervous system can result in neurodegeneration or tumorigenesis. Despite the importance of DNA damage signalling, the neural function of many critical DNA repair factors is unclear. BRCA2 is necessary for homologous recombination repair of DNA and the prevention of diseases including Fanconi Anemia and cancer. We determined the role of BRCA2 during brain development by inactivating murine Brca2 throughout neural tissues. In striking contrast to early embryonic lethality after germ-line inactivation, Brca2(LoxP/LoxP);Nestin-cre mice were viable. However, Brca2 loss profoundly affected neurogenesis, particularly during embryonic and postnatal neural development. These neurological defects arose from DNA damage as Brca2(LoxP/LoxP);Nestin-cre mice showed extensive gammaH2AX in neural tissue and p53 deficiency restored brain histology but lead to rapid formation of medulloblastoma brain tumors. In contrast, loss of the Atm kinase did not markedly attenuate apoptosis after Brca2 loss, but did partially restore cerebellar morphology, supporting a genomic surveillance function for ATM during neurogenesis. These data illustrate the importance of Brca2 during nervous system development and underscore the tissue-specific requirements for DNA repair factors.  相似文献   

14.
BRCA2 is required for homology-directed repair of chromosomal breaks   总被引:1,自引:0,他引:1  
The BRCA2 tumor suppressor has been implicated in the maintenance of chromosomal stability through a function in DNA repair. In this report, we examine human and mouse cell lines containing different BRCA2 mutations for their ability to repair chromosomal breaks by homologous recombination. Using the I-SceI endonuclease to introduce a double-strand break at a specific chromosomal locus, we find that BRCA2 mutant cell lines are recombination deficient, such that homology-directed repair is reduced 6- to >100-fold, depending on the cell line. Thus, BRCA2 is essential for efficient homology-directed repair, presumably in conjunction with the Rad51 recombinase. We propose that impaired homology-directed repair caused by BRCA2 deficiency leads to chromosomal instability and, possibly, tumorigenesis, through lack of repair or misrepair of DNA damage.  相似文献   

15.
Tipin was originally isolated as a protein interacting with Timeless/Tim1/Tim (Tim), which is known to be involved in both circadian rhythm and cell cycle checkpoint regulation. The endogenous Tim and Tipin proteins in human cells, interacting through the N-terminal segment of each molecule, form a complex throughout the cell cycle. Tipin and Tim are expressed in the interphase nuclei mostly at constant levels during the cell cycle, and small fractions are recovered in the chromatin-enriched fractions during S phase. Depletion of endogenous Tipin results in reduced growth rate, and this may be due in part to inefficient progression of S phase and DNA synthesis. Knockdown of Tipin induces radioresistant DNA synthesis and inhibits phosphorylation of Chk1 kinase caused by replication stress, as was observed with that of Tim. Knockdown of Tipin or Tim results in reduced protein level and relocation to the cytoplasm of the respective binding partner, suggesting that the complex formation may be required for stabilization and nuclear accumulation of both proteins. Furthermore, both Tipin and Tim may facilitate the accumulation of Claspin in the nuclei under replication stress, whereas nuclear localization of Tipin and Tim is unaffected by Claspin. Our results indicate that mammalian Tipin is a checkpoint mediator that cooperates with Tim and may regulate the nuclear relocation of Claspin in response to replication checkpoint.  相似文献   

16.
17.
Host RNA helicase has been involved in human immunodeficiency virus type 1 (HIV-1) replication, since HIV-1 does not encode an RNA helicase. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether DDX RNA helicases modulate the HIV-1 Tat function. In this study, we demonstrate, for the first time, that DDX3 is required for the HIV-1 Tat function. Notably, DDX3 colocalized and interacted with HIV-1 Tat in cytoplasmic foci. Indeed, DDX3 localized in the cytoplasmic foci P-bodies or stress granules under stress condition after the treatment with arsenite. Importantly, only DDX3 enhanced the Tat function, while various distinct DEAD-box RNA helicases including DDX1, DDX3, DDX5, DDX17, DDX21, and DDX56, stimulated the HIV-1 Rev-dependent RNA export function, indicating a specific role of DDX3 in Tat function. Indeed, the ATPase-dependent RNA helicase activity of DDX3 seemed to be required for the Tat function as well as the colocalization with Tat. Furthermore, the combination of DDX3 with other distinct DDX RNA helicases cooperated to stimulate the Rev but not Tat function. Thus, DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function.  相似文献   

18.
Although the breast cancer susceptibility gene 1 (BRCA1) protein is predominantly nuclear, its localization can vary during the cell cycle in response to cellular insults. For example, in S-phase cells, BRCA1 forms subnuclear foci and localizes to the perinuclear region in response to DNA damage. The present study provides evidence that BRCA1 is transiently excluded from the nucleus during the early part of S phase in the absence of DNA damage. The percentage of MCF-7 human breast cancer cells predominantly expressing nonnuclear BRCA1 significantly correlates with the percentage of cells within early S phase. This redistribution of BRCA1 is partially sensitive to leptomycin B, indicating that CRM-1-mediated nuclear export is involved. Similar results were observed with MCF-12A nonmalignant human mammary cells. The abilities of BAPTA-AM, an intracellular calcium chelator, to inhibit the change in BRCA1 localization, and of A23187, a calcium ionophore, and of thapsigargin to mimic nuclear exclusion of BRCA1, provide evidence for the involvement of calcium in this process. The calcium-mediated change in BRCA1 localization occurs in several cell lines, indicating that this effect is not cell line specific. BRCA2 localization is not affected by A23187. Furthermore, inhibition of calcium-calmodulin interaction and calcium-calmodulin dependent protein kinase II attenuates the calcium-mediated change in BRCA1 localization. These data suggest that BRCA1 nuclear export can be cell cycle-regulated by a calcium-dependent mechanism.  相似文献   

19.
CYC2 is an essential PHO80-like cyclin that forms a complex with the cdc2-related kinase CRK3 in Trypanosoma brucei. In both procyclic and bloodstream form T. brucei, knock-down of CYC2 by RNA interference (RNAi) led to an accumulation of cells in G(1) phase. Additionally, in procyclic cells, but not in bloodstream form cells, CYC2 RNAi induced a specific cell elongation at the posterior end. The G(1) block, as well as the posterior end elongation in the procyclic form, was irreversible once established. Staining for tyrosinated alpha-tubulin and morphometric analyses showed that the posterior end elongation occurred through active microtubule extension, with no repositioning of the kinetoplast. Hence, these cells can be classified as exhibiting the "nozzle" phenotype as has been described for cells that ectopically express TbZFP2, a zinc finger protein that is involved in the differentiation of the bloodstream form to procyclic form. Within the tsetse fly, procyclic trypanosomes differentiate to elongated mesocyclic cells. However, although mesocyclic trypanosomes isolated from tsetse flies also show active microtubule extension at the posterior end, the kinetoplast is coincidentally repositioned such that it always lies approximately midway between the nucleus and posterior end of the cell. Thus, in the procyclic form CYC2 has dual functionality and is required for both cell cycle progression through G(1) and for the maintenance of correct cell morphology, whereas in the bloodstream form only a role for CYC2 in G(1) progression is evident.  相似文献   

20.
Human DNA mismatch repair (MMR) is involved in the removal of DNA base mismatches that arise either during DNA replication or are caused by DNA damage. In this study, we show that the activation of the MMR component hMLH1 in response to doxorubicin (DOX) treatment requires the presence of BRCA1 and that this phenomenon is mediated by an ATM/ATR dependent phosphorylation of the hMLH1 Ser-406 residue. BRCA1 is an oncosuppressor protein with a central role in the DNA damage response and it is a critical component of the ATM/ATR mediated checkpoint signaling. Starting from a previous finding in which we demonstrated that hMLH1 is able to bind to BRCA1, in this study we asked whether BRCA1 might be the bridge for ATM/ATR dependent phosphorylation of the hMLH1 molecular partner. We found that: (i) the negative modulation of BRCA1 expression is able to produce a remarkable reversal of hMLH1 stabilization, (ii) BRCA1 is required for post-translational modification produced by DOX treatment on hMLH1 which is, in turn, attributed to the ATM/ATR activity, (iii) the serine 406 phosphorylatable residue is critical for hMLH1 activation by ATM/ATR via BRCA1. Taken together, our data lend support to the hypothesis suggesting an important role of this oncosuppressor as a scaffold or bridging protein in DNA-damage response signaling via downstream phosphorylation of the ATM/ATR substrate hMLH1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号