首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The ability of Delftia acidovorans to incorporate a broad range of 3-hydroxyvalerate (3HV) monomers into polyhydroxyalkanoate (PHA) copolymers was evaluated in this study. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] containing 0–90 mol% of 3HV was obtained when a mixture of sodium 3-hydroxybutyrate and sodium valerate was used as the carbon sources. Transmission electron microscopy analysis revealed an interesting aspect of the P(3HB-co-3HV) granules containing high molar ratios of 3HV whereby, the copolymer granules were generally larger than those of poly(3-hydroxybutyrate) [P(3HB)] granules, despite having almost the same cellular PHA contents. The large number of P(3HB-co-3HV) granules occupying almost the entire cell volume did not correspond to a higher amount of polymer by weight. This indicated that the granules of P(3HB-co-3HV) contain polymer chains that are loosely packed and therefore have lower density than P(3HB) granules. It was also interesting to note that a decrease in the length of the side chain from 3HV to 4-hydroxybutyrate (4HB) corresponded to an increase in the density of the respective PHA granules. The presence of longer side chain monomers (3HV) in the PHA structure seem to exhibit steric effects that prevent the polymer chains in the granules from being closely packed. The results reported here have important implications on the maximum ability of bacterial cells to accumulate PHA containing monomers with longer side chain length.  相似文献   

2.
聚羟基烷酸酯 (PHA) 改性研究进展   总被引:3,自引:0,他引:3  
本文简述了生物制造聚羟基烷酸酯(PHA),包括聚3-羟基丁酸酯(PHB)、聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)、聚(3-羟基丁酸酯-4-羟基丁酸酯)(P3/4HB)、聚(3-羟基丁酸酯-3-羟基己酸酯)(PHBH)的产业化现状,综述了针对PHA材料热稳定性差、加工窗口较窄等缺点而进行的一些改性研究。选用适当方法对PHA进行改性,可使其性能得到优化,应用领域得到拓展。  相似文献   

3.
Polyhydroxyalkanoate (PHA) biosynthesis genes were cloned and characterized from Alcaligenes sp. SH-69 which can synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon source. The DNA sequence analysis revealed two consecutive genes coding for PHA synthase and -ketothiolase and the gene coding for acetoacetyl-CoA reductase located about 2-kbp downstream of the two genes. Recombinant Escherichia coli strains with the cloned PHA biosynthesis genes synthesized poly(3-hydroxybutyrate) in Luria-Bertani medium containing 2% glucose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in M9 minimal medium supplemented with 1% glucose, 1 mM valine, and 2 mM threonine, which demonstrates that the PHA biosynthesis genes of Alcaligenes sp. SH-69 are functional in E. coli. © Rapid Science Ltd. 1998  相似文献   

4.
Polyhydroxyalkanoates (PHA) containing block copolymers were synthesized in Cupriavidus necator using periodic substrate addition. Poly(3-hydroxybutyrate) (PHB) segments were formed during fructose utilization. Pulse feeds of pentanoic acid resulted in the synthesis of 3-hydroxyvalerate monomers, forming poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) random copolymer. PHA synthesis was controlled using analysis of oxygen uptake and carbon evolution rates from the bioreactor off-gas. A combination of characterization techniques applied to the polymer batches strongly suggests the presence of block copolymers: (i) Thermodynamically stable polymer samples obtained by fractionation and analyzed by differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR) indicate that some fractions, representing approximately 30% of the total polymer sample, exhibit melting characteristics and nearest-neighbor statistics indicative of block copolymers, (ii) preliminary rheology experiments indicate additional mesophase transitions only found in block copolymer materials, (iii) dynamic mechanical analysis shows extension of the rubbery plateaus in block copolymer samples, and (iv) uniaxial extension tests result in differences in mechanical properties (modulus and elongation at failure) expected of similarly prepared block copolymer and single polymer type materials.  相似文献   

5.
Mechanical testing of solvent cast films consisting of short-chain-length (SCL) polyhydroxyalkanoate (PHA) films suggested that films consisting of block copolymers retained more elasticity over time with respect to films of similar random copolymers of comparable composition. Two experimental techniques, wide angle X-ray scattering (WAXS) and uniaxial extension, were used to quantitatively investigate the structure-property relationship of bacterially synthesized PHA block copolymers of poly(3-hydroxybutyrate) (PHB) homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) random copolymer (PHBV) segments. Uniaxial testing experiments yielded the Young's modulus, ultimate tensile strength, and the elongation until fracture of the films. Percent crystallinity was determined by deconvolution of amorphous and crystalline scattering peaks obtained from WAXS. Two PHBV films containing either 8% 3-hydroxyvalerate monomer (3HV) or 29% 3HV exhibited a quick transition to brittle behavior, decreasing to less than 20% percent elongation at fracture within a few days after annealing. Conversely, the block copolymer samples remained higher than 100% elongation at fracture a full 3 months after annealing. Because block copolymers covalently link polymers that would otherwise form thermodynamically separate phases, the rates and degrees of crystallization of the block copolymers are less than the random copolymer samples. These differences translate into materials that extend the property space of biologically synthesized SCL PHA.  相似文献   

6.
Chemical recycling of bio-based polymers polyhydroxyalkanoates (PHAs) by thermal degradation was investigated from the viewpoint of biorefinery. The thermal degradation resulted in successful transformation of PHAs into vinyl monomers using alkali earth compound (AEC) catalysts. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s (PHBVs) were smoothly and selectively depolymerized into crotonic (CA) and 2-pentenoic (2-PA) acids at lower degradation temperatures in the presence of CaO and Mg(OH)2 as catalysts. Obtained CA from 3-hydroxybutyrate sequences in PHBV was copolymerized with acrylic acid to produce useful water-soluble copolymers, poly(crotonic acid-co-acrylic acid) that have high glass-transition temperatures. The copolymerization of CA derived from PHA pyrolysis is an example of cascade utilization of PHAs, which meets the idea of sustainable development.  相似文献   

7.
Microbial degraders of poly(3-hydroxybutyrate) (PHB) were isolated from soil. Arthrobacter sp. strain W6 used not only PHB as a carbon source, but also PHAs such as poly(3-hydroxybutyrate-co-[5%]3-hydroxyvalerate), poly(3-hydroxybutyrate-co-[14%]3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-[22%]3-hydroxyvalerate). PHB-depolymerase was purified to homogeneity from the culture broth of Arthrobacter sp. strain W6 by a procedure involving DEAE- and butyl-Toyopearl column chromatographies. The Mr of the enzyme was estimated to be about 47,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 8.5 and 50 degrees C, and was inhibited by phenylmethylsulfonyl fluoride, Hg2+, Ag+, and Pb2+.  相似文献   

8.
A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.  相似文献   

9.
The polyhydroxyalkanoic acid synthase gene from Chromobacterium violaceum (phaC(Cv)) was cloned and characterized. A 6.3-kb BamHI fragment was found to contain both phaC(Cv) and the polyhydroxyalkanoic acid (PHA)-specific 3-ketothiolase (phaA(Cv)). Escherichia coli strains harboring this fragment produced significant levels of PHA synthase and 3-ketothiolase, as judged by their activities. While C. violaceum accumulated poly(3-hydroxybutyrate) or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when grown on a fatty acid carbon source, Klebsiella aerogenes and Ralstonia eutropha (formerly Alcaligenes eutrophus), harboring phaC(Cv), accumulated the above-mentioned polymers and, additionally, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) when even-chain-length fatty acids were utilized as the carbon source. This finding suggests that the metabolic environments of these organisms are sufficiently different to alter the product range of the C. violaceum PHA synthase. Neither recombinant E. coli nor recombinant Pseudomonas putida harboring phaC(Cv) accumulated significant levels of PHA. Sequence analysis of the phaC(Cv) product shows homology with several PHA synthases, most notably a 48% identity with that of Alcaligenes latus (GenBank accession no. AAD10274).  相似文献   

10.
Biosynthesis and composition of bacterial poly(hydroxyalkanoates)   总被引:6,自引:0,他引:6  
It is well established that Alcaligenes eutrophus can accumulate a copolymer containing 3-hydroxybutyrate and 3-hydroxyvalerate, but longer 3-hydroxyacid monomers have not been reported to occur in this organism. The properties of the enzymes of poly(hydroxyalkanoate) (PHA) biosynthesis are discussed and it is proposed that the substrate specificity of the polymerizing enzyme restricts the range of monomer units incorporated into PHA. Various other bacteria produce similar copolymers from propionic acid and/or valeric acid. A number of Pseudomonas species accumulate PHAs containing longer-chain monomer units from linear alkanoic acids, alkanes and alcohols.  相似文献   

11.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

12.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

13.
Lamellar thickening behavior of microbial polyesters, poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] annealed at various temperatures was investigated to make sure of the occurrence of cocrystallization of both components. All the copolymers showed steep increases in melting points accompanied by partial melting as the annealing temperature increased up to just below the melting points. In contrast, long periods of P(3HB-co-7mol% 3HV) increased to twice, similar to those of P(3HB), with increasing annealing temperature up to just below the melting point, while long periods of P(3HB-co-7mol% 4HB) and P(3HB-co-92mol% 3HV) only increased up to one and a half times. Lattice indices of unit cell of the former crystal were increased slightly, while those of the latter crystal remained unchanged. These results imply that the P(3HB) crystal can occlude the 3HV component to some extent, but hardly includes the 4HB component, and P(3HV) crystal also excludes the 3HB component.  相似文献   

14.
The thermal degradation of the biodegradable bacterial polyesters poly(3-hydroxybutyrate), PHB, poly(3-hydroxyvalerate), PHV, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), 0-21 mol % of hydroxyvalerate, was studied. At moderately low temperatures (170-200 degrees C), the main product is a well-defined oligomer, especially a 500-10,000 g/mol macromolecule, which contains one unsaturated end group, predominantly a trans-alkenyl end group, as well as a carboxylic end group. The process was studied regarding the effect of the copolymer composition and reaction time at 190 degrees C. During the first few hours of reaction, the thermal degradation of PHB and PHV followed a kinetic model of random scission, but eventually auto-acceleration of the pyrolysis was detected, probably due to the influence of the crotonate end groups of the oligomers formed. Ten-time scale-up experiments on a Brabender instrument were successfully undertaken.  相似文献   

15.
Abstract Several alcohols were examined as substrates for the polyhydroxyalkanoate synthesis by Paracoccus denitrificans. The bacterium synthesized a homopolyester of poly(3-hydroxybutyrate) from ethanol. When n -pentanol was used as growth substrate, homopolyester poly(3-hydroxyvalerate) was synthesized, whereas copolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulated during bacterial growth on n -propanol. When alcohols were automatically fed as growth substrates, ethanol, n -propanol, and n -pentanol gave higher polyester content. Although poly(3-hydroxybutyrate) was synthesized from methanol or n -butanol, its content was very low. Under nitrogen-deficient conditions, polyester;content in cells increased, especially with ethanol, n -propanol, and n -pentanol. Using a mixture of two alcohols P. denitrificans could synthesize polyesters with varying relative ratios of 3-hydroxybutyrate to 3-hydroxyvalerate.  相似文献   

16.
The aim of this study was to evaluate and to compare the long-term kinetics curves of biodegradation of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and a PHB/polylactic acid composite. The total weight loss and the change of average viscosity molecular weight were used as the parameters reflecting the biodegradation degree. The rate of biodegradation was analyzed in vitro in the presence of lipase and in vivo after film implantation in animal tissues. The morphology of the PHB film surface was studied by the atomic force microscopy technique. It was shown that PHB biodegradation involves both polymer hydrolysis and its enzymatic biodegradation. The results obtained in this study can be used for the development of various PHB-based medical devices.  相似文献   

17.
18.
The objective of the present study was to investigate the ability of Cupriavidus necator to produce poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) on various carbon sources in batch cultivation. These results show that C. necator produces poly-3-hydroxybutyrate from single carbon sources. The highest poly-3-hydroxybutyrate (P3HB) content was achieved at growth on fructose in the exponential growth phase. The maximum yield of the P3HV content was obtained when fructose was mixed with acetate. The highest content P3HB-co-3HV was also achieved by C. necator when we supplied C-excess and N- and P-normal conditions. These results indicate that C. necator accumulates high polyhydroxyalkanoates (PHA) content by depleting these elements in the culture medium. Nitrogen and phosphorus limitation has no significant effect on the PHA production, whereas C-excess leads to an increase in PHA formation of up to 92% PHAs of cell dry weight after growth on 5 g/L acetate and 40 g/L fructose.  相似文献   

19.
A new method to estimate the number of polyhydroxyalkanoates (PHA)-degraders in soil and to isolate degraders, called the film-MPN method, is proposed. The incubation time was measured by the first order reaction (FOR) model. This method was used to estimate numbers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-co-3HV)]- and poly(3-hydroxyvalerate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]-degraders in garden soil (4.30 x 10(5) and 2.15 x 10(5) aerobic degraders per gram of dry soil, respectively). The number of P(3HB-co-3HV)-degraders in paddy field soil was 5.06 x 10(5) aerobic degraders per gram dry soil. Also, several P(3HB-co-3HV)-degraders were isolated directly from positive-growth tubes of high dilution.  相似文献   

20.
Recent data on the biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and its regulation in bacteria are reviewed, with special emphasis on the properties and regulation of the relevant enzymes and their genes. Some conditions promoting the synthesis of PHB and PHB/V by natural, mutant, and recombinant producers are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号