首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The regional distributions of iron, copper, zinc, magnesium, and calcium in parkinsonian brains were compared with those of matched controls. In mild Parkinson's disease (PD), there were no significant differences in the content of total iron between the two groups, whereas there was a significant increase in total iron and iron (III) in substantia nigra of severely affected patients. Although marked regional distributions of iron, magnesium, and calcium were present, there were no changes in magnesium, calcium, and copper in various brain areas of PD. The most notable finding was a shift in the iron (II)/iron (III) ratio in favor of iron (III) in substantia nigra and a significant increase in the iron (III)-binding, protein, ferritin. A significantly lower glutathione content was present in pooled samples of putamen, globus pallidus, substantia nigra, nucleus basalis of Meynert, amygdaloid nucleus, and frontal cortex of PD brains with severe damage to substantia nigra, whereas no significant changes were observed in clinicopathologically mild forms of PD. In all these regions, except the amygdaloid nucleus, ascorbic acid was not decreased. Reduced glutathione and the shift of the iron (II)/iron (III) ratio in favor of iron (III) suggest that these changes might contribute to pathophysiological processes underlying PD.  相似文献   

2.
The efficacy of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid in counteracting the toxicity of paraquat in Drosophila melanogaster was examined. Male Oregon wild strain flies were fed for 5 days with control food or food containing the test substance. They were transferred in groups of five to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival was determined 24 and 48 h later. All the substances assayed increased the survival of D. melanogaster. At equimolar concentrations (0.43 mM) melatonin was more effective than serotonin, lipoic acid and ascorbic acid. However, lower concentrations of glutathione (0.22 mM) and minocycline (0.05 mM) were as efficient as melatonin. The highest survival rate (38.6%) after 48 h of paraquat treatment was found with 2.15 mM of lipoic acid. No synergistic effect of melatonin with glutathione, serotonin, minocycline, lipoic acid and ascorbic acid was detected.  相似文献   

3.
The objective of this study was to determine whether acutely exposing rats to ozone would result in the loss of antioxidants from plasma and bronchoalveolar lavage fluid (BALF). Additional goals were to compare analyses of the same antioxidant concentration between different laboratories, to investigate which methods have the sensitivity to detect decreased levels of antioxidants, and to identify a reliable measure of oxidative stress in ozone-exposed rats. Male Fisher rats were exposed to either 2.0 or 5.0 ppm ozone inhalation for 2 h. Blood plasma and BALF samples were collected 2, 7, and 16 h after the exposure. It was found that ascorbic acid in plasma collected from rats after the higher dose of ozone was lower at 2 h, but not later. BALF concentrations of ascorbic acid were decreased at both 2 and 7 h postexposure. Tocopherols (α, δ, γ), 5-nitro-γ-tocopherol, tocol, glutathione (GSH/GSSG), and cysteine (Cys/CySS) were not decreased, regardless of the dose or postexposure time point used for sample collection. Uric acid was significantly increased by the low dose at 2 h and the high dose at the 7 h point, probably because of the accumulation of blood plasma in the lung from ozone-increased alveolar capillary permeability. We conclude that measurements of antioxidants in plasma are not sensitive biomarkers for oxidative damage induced by ozone and are not a useful choice for the assessment of oxidative damage by ozone in vivo.  相似文献   

4.
Free radicals are reactive species that are responsible for damaging normal cells and creating diseases in humans. Antioxidants from natural resources or as supplements can scavenge these radicals. A MedLine search indicates that vitamin C is the most investigated antioxidant responsible for the elimination of free radicals. Its chelating property for the removal of neurotoxic lead, which creates oxidative stress in the human biosystem, was investigated and results indicate its great potential as a lead-detoxifying agent.  相似文献   

5.
目的:考察了采用实验室常用的磁力搅拌法和改进的机械搅拌法后,聚乙烯醇胶体溶液中抗坏血酸的分布均一度。接着,在机械搅拌法的基础上,研究了抗坏血酸粉末与抗坏血酸溶液在胶中分散的均一性。方法:分散混合方法:机械搅拌法,磁力搅拌法;均一性检验方法:以单位质量胶载药量RSD值作为指标;统计学分析方法:t检验。结果:采用磁力搅拌法不能够较好地混合抗坏血酸与PVA胶体溶液;而机械搅拌法RSD值控制在10%以内,说明胶中抗坏血酸均一分布,符合生产要求。T检验表明两种方法具有显著性差异。药物溶于水后分散更为均一。结论:解决药物在高粘度溶液介质中均匀分散的问题。  相似文献   

6.
《Free radical research》2013,47(5):385-391
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

7.
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

8.
Ascorbic acid (vitamin C) is synthesized in rodent liver, circulates in the blood, and is concentrated in the brain. Experiments were performed to characterize the mechanism of ascorbate uptake by rat cerebral astrocytes in primary culture. Astroglial uptake of L-[14C]ascorbate was observed to be both saturable and stereoselective. In addition, uptake was dependent on both the incubation temperature and the concentration of Na+ because it was largely inhibited by cooling to 4 degrees C, by treatment with ouabain to increase intracellular Na+, and by the substitution of K+, Li+, or N-methyl-D-glucamine for extracellular Na+. The affinity for ascorbate was relatively high in cells incubated with a physiological concentration of extracellular Na+, because the apparent Km was 32 microM in 138 mM Na+. However, the affinity for ascorbate was significantly decreased when the extracellular Na+ concentration was lowered. Treatment of astrocytes with dibutyryl cyclic AMP induced stellation and increased the maximum rate of ascorbate uptake by 53%. We conclude that astrocytes possess a stereoselective, high-affinity, and Na+-dependent uptake system for ascorbate. This system may regulate the cerebral ascorbate concentration and consequently modulate neuronal function.  相似文献   

9.
Copper/zinc-superoxide dismutase (CuZn-SOD) transgenic mice overexpress the gene for human CuZn-SOD. To assess the effects of the overexpression of CuZn-SOD on the brain scavenging systems, we have measured the activities of manganese-SOD (Mn-SOD), catalase, and glutathione peroxidase (GSH-Px) in various regions of the mouse brain. In nontransgenic mice, cytosolic CuZn-SOD activity was highest in the caudate-putamen complex; this was followed by the brainstem and the hippocampus. The lowest activity was observed in the cerebellum. In transgenic mice, there were significant increases of cytosolic CuZn-SOD activity in all of these regions, with ratios varying from a twofold increase in the brainstem to 3.42-fold in the cerebellum in comparison with nontransgenic mice. Particulate Mn-SOD was similarly distributed in all brain regions, and its levels also were significantly increased in superoxide dismutase (SOD)-transgenic mice. In the brains of nontransgenic mice, cytosolic catalase activity was similar in all brain regions except the cortex, which showed less than 50% of the activity observed in the other regions. In transgenic mice, cytosolic catalase activity was significantly increased, with the cortex showing the greatest changes (133%) in comparison with nontransgenic mice. The smallest increases were observed in the hippocampus (34%). In contrast to what was observed for SOD and catalase, there were no significant changes in cytosolic GSH-Px activity in any of the brain regions examined. The present results indicate that, in addition to displaying marked increases in the levels of brain CuZn-SOD activity, SOD-transgenic mice also exhibit increases in other enzymes that scavenge oxygen-based radicals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract

Alcoholic liver disease is caused mainly by free radicals. Ascorbic acid (AA) and glutathione (GSH) are the major water-soluble antioxidants in the liver. The impact of AA supplementation on GSH, AA and activities of GSH-dependent enzymes in alcoholic guinea pigs was studied and was compared with alcohol abstention. Guinea pigs were administered ethanol at a dose of 4 g/kg body weight (b.wt)/day for 90 days. After 90 days, alcohol administration was stopped and one-half of the ethanol-treated animals were supplemented with AA (25 mg/100 g b.wt) for 30 days and the other half was maintained as the abstention group. There was a significant increase in the activities of alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in the serum of the ethanol group. In addition, a significant decrease in the GSH content, activities of GSH peroxidase, GSH reductase, and increased activity of GSH-S-transferase were observed in the liver of the ethanol group. Histopathological analysis and triglycerides content in the liver of the ethanol group showed induction of steatosis. But AA supplementation and abstention altered the changes caused by ethanol. However, maximum protective effect was observed in the AA-supplemented group indicating the ameliorative effect of AA in the liver.  相似文献   

11.
The inhibition of glutathione (GSH) synthesis by -buthionine-SR-sulfoximine (BSO) causes aggravation of hepatotoxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice. On the other hand, synthesis of metallothionein (MT), a cysteine-rich protein having radical scavenging activity, is induced by PQ, and the induction by PQ is significantly enhanced by pretreatment of mice with BSO. The purpose of present study is to examine whether generation of reactive oxygens is involved in the induction of MT synthesis by PQ under inhibition of GSH synthesis. Administration of PQ to BSO-pretreated mice increased hepatic lipid peroxidation and frequency of DNA single strand breakage followed by manifestation of the liver injury and induction of MT synthesis. Both vitamin E and deferoxamine prevented MT induction as well as lipid peroxidation in the liver of mice caused by administration of BSO and PQ. In cultured colon 26 cells, both cytotoxicity and the increase in MT mRNA level caused by PQ were significantly enhanced by pretreatment with BSO. Facilitation of PQ-induced reactive oxygen generation was also observed by BSO treatment. These results suggest that reactive oxygens generated by PQ under inhibition of GSH synthesis may stimulate MT synthesis. GSH depletion markedly increased reactive oxygen generation induced by PQ, probably due to the reduced cellular capability to remove the radical species produced.  相似文献   

12.
Abstract: We have previously shown, using qualitative approaches, that oligodendroglial precursors are more readily damaged by free radicals than are astrocytes. In the present investigation we quantified the oxidative stress experienced by the cells using oxidation of dichlorofluorescin diacetate to dichlorofluorescein as a measure of oxidative stress; furthermore, we have delineated the physiological bases of the difference in susceptibility to oxidative stress found between oligodendroglial precursors and astrocytes. We demonstrate that (a) oligodendroglial precursors under normal culture conditions are under six times as much oxidative stress as astrocytes, (b) oxidative stress experienced by oligodendroglial precursors increases sixfold when exposed to 140 mW/m2 of blue light, whereas astrocytic oxidative stress only doubles, (c) astrocytes have a three times higher concentration of GSH than oligodendroglial precursors, (d) oligodendroglial precursors have >20 times higher iron content than do astrocytes, and (e) oxidative stress in oligodendroglial precursors can be prevented either by chelating intracellular free iron or by raising intracellular GSH levels to astrocytic values. We conclude that GSH plays a central role in preventing free radical-mediated damage in glia.  相似文献   

13.
Activated white cells use oxidants generated by the heme enzyme myeloperoxidase to kill invading pathogens. This enzyme utilizes H2O2 and Cl, Br, or SCN to generate the oxidants HOCl, HOBr, and HOSCN, respectively. Whereas controlled production of these species is vital in maintaining good health, their uncontrolled or inappropriate formation (as occurs at sites of inflammation) can cause host tissue damage that has been associated with multiple inflammatory pathologies including cardiovascular diseases and cancer. Previous studies have reported that sulfur-containing species are major targets for HOCl but as the reactions are fast the only physiologically relevant kinetic data available have been extrapolated from data measured at high pH (>10). In this study these values have been determined at pH 7.4 using a newly developed competition kinetic approach that employs a fluorescently tagged methionine derivative as the competitive substrate (k(HOCl + Fmoc-Met), 1.5×108 M−1 s−1). This assay was validated using the known k(HOCl + NADH) value and has allowed revised k values for the reactions of HOCl with Cys, N-acetylcysteine, and glutathione to be determined as 3.6×108, 2.9×107, and 1.24×108 M−1 s−1, respectively. Similar experiments with methionine derivatives yielded k values of 3.4×107 M−1 s−1 for Met and 1.7×108 M−1 s−1 for N-acetylmethionine. The k values determined here for the reaction of HOCl with thiols are up to 10-fold higher than those previously determined and further emphasize the critical importance of reactions of HOCl with thiol targets in biological systems.  相似文献   

14.
Reduction of Vanadate by Ascorbic Acid and Noradrenaline in Synaptosomes   总被引:1,自引:2,他引:1  
The effect of ascorbic acid and noradrenaline on the inhibition of synaptosomal membrane ATPase by vanadate has been studied. Ascorbic acid (2 x 10(-3) M) and noradrenaline (10(-4) M) partly reversed the inhibition by vanadate (10(-6) M); however, when both were administered together the inhibition was completely eliminated. Using electron spin resonance (ESR) spectroscopy, we detected that ascorbic acid (10(-3) M) caused a 42% of reduction of vanadate (10(-4) M). Noradrenaline (10(-4) M) alone also reduced vanadate (10(-4) M) partially. When ascorbic acid and noradrenaline were present together all the vanadate was reduced to vanadyl. The concentration of ascorbic acid present in the brain under physiological conditions is identical to that found effective in our experiments. We suggest that ascorbic acid may protect the ATPase, at least in part, from inhibition by vanadate as a consequence of reducing vanadate to vanadyl. In those tissues where noradrenaline is also present a complete reduction of endogenous vanadium can be presumed.  相似文献   

15.
To determine whether alteration in serum antioxidant status is related to the increased oxidative stress as a cause of diabetic angiopathy, we measured both the antioxidant activity (AOA) and total peroxyl radical-trapping antioxidant parameter (TRAP), and their component individual antioxidants in serum of children with insulin-dependent diabetes mellitus (IDDM). The AOA was measured as the ability to inhibit lipid autoxidation in brain homogenates. TRAP was assayed as the ability to delay lipid peroxidation induced by an azo initiator. Antioxidants measured were ceruloplasmin, transferrin, and albumin components of AOA; and ascorbic acid, uric acid, protein sulfhydryl, and alpha-tocopherol as components of TRAP. Serum AOA appeared to be decreased in the diabetics in relation to poor glycemic control, corresponding to the decrease in transferrin and albumin. Serum haptoglobin level was also decreased in the diabetics. Similarly, the directly measured TRAP value was decreased in the diabetic serum mainly due to the decreased contribution of unidentified chain-breaking antioxidants, despite the increase in ascorbic acid and alpha-tocopherol. The decrease in both types of antioxidant activity in the diabetic serum, as new findings, suggests that a defective serum antioxidant status contributes to the increased oxidative stress in IDDM.  相似文献   

16.
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.  相似文献   

17.
Abstract: γ-Aminobutyric acid (GABA) was found to induce the release of ascorbic acid from rat striatal homogenates and minces. This release was studied with the use of a rapid supervision system with an on-line amperometric detector that monitors for the presence of easily oxidized substances (i.e., ascorbate, 3,4-dihydroxyphenylethylamine). The release was found to be calcium-independent and depolarization-dependent. This releasable pool of ascorbate could be replenished through nonstereospecific uptake. The releasing action of GABA was mimicked by the GABA agonist, muscimol, and was completely inhibited by the GABA antagonist, picrotoxin. The structural analogues of GABA, β-alanine and γ-hydroxybutyric acid, had no effect. These data indicate that ascorbate release is GABA-receptor mediated and syn-aptically localized.  相似文献   

18.
Abstract: Alterations in the glutathione system and impairment in energy metabolism have both been implicated in the loss of dopamine neurons in Parkinson's disease. This study examined the importance of cellular glutathione and the involvement of oxidative stress in the loss of mesencephalic dopamine and GABA neurons due to inhibition of energy metabolism with malonate, the reversible, competitive inhibitor of succinate dehydrogenase. Consistent with previous findings, exposure to malonate for 24 h followed by 48 h of recovery caused a dose-dependent loss of the dopamine population with little effect on the GABA population. Toxicity was assessed by simultaneous measurement of the high-affinity uptake of [3H]dopamine and [14C]GABA. Total glutathione content in rat mesencephalic cultures was decreased by 65% with a 24-h pretreatment with 10 µM buthionine sulfoxamine. This reduction in glutathione level greatly potentiated damage to both the dopamine and GABA populations and removed the differential susceptibility between the two populations in response to malonate. These findings point to a role for oxidative stress occurring during energy impairment by malonate. Consistent with this, several spin-trapping agents, α-phenyl-tert-butyl nitrone and two cyclic nitrones, MDL 101,002 and MDL 102,832, completely prevented malonate-induced damage to the dopamine neurons in the absence of buthionine sulfoxamine. The spin-trapping agents also completely prevented toxicity to both the dopamine and GABA populations when cultures were exposed to malonate after pretreatment with buthionine sulfoxamine to reduce glutathione levels. Counts of tyrosine hydroxylase-positive neurons verified enhancement of cell loss by buthionine sulfoxamine plus malonate and protection against cell loss by the spin-trapping agents. NMDA receptors have also been shown to play a role in malonate-induced dopamine cell loss and are associated with the generation of free radicals. Consistent with this, toxicity to the dopamine neurons due to a 1-h exposure to 50 µM glutamate was attenuated by the nitrone spin traps. These findings provide evidence for an oxidative challenge occurring during inhibition of energy metabolism by malonate and show that glutathione is an important neuroprotectant for midbrain neurons during situations when energy metabolism is impaired.  相似文献   

19.
The major route for elimination of 4-hydroxy-2-(E)-nonenal (4-HNE) has long been considered to be through glutathionylation and eventual excretion as a mercapturic acid conjugate. To better quantitate the glutathionylation process, we developed a sensitive LC–MS/MS method for the detection of glutathione (GSH) conjugates of 4-hydroxy-2-(E)-alkenal enantiomers having a carbon skeleton of C5 to C12. The newly developed method enabled us to quantify 4-hydroxy-2-(E)-alkenal–glutathione diastereomers in various organs, i.e., liver, heart, and brain. We identified the addition of iodoacetic acid as a critical step during sample preparation to avoid an overestimation of glutathione–alkenal conjugation. Specifically, we found that in the absence of a quenching step reduced GSH and 4-hydroxy-2-(E)-alkenals react very rapidly during the extraction and concentration steps of sample preparation. Rat liver perfused with d11-4-hydroxy-2-(E)-nonenal (d11-4-HNE) revealed enantioselective conjugation with GSH and transportation out of the liver. In the d11-4-HNE-perfused rat livers, the amount of d11-(S)-4-HNE–GSH released from the rat liver was higher than that of d11-(R)-4-HNE–GSH, and more d11-(R)-4-HNE–GSH than d11-(S)-4-HNE–GSH remained in the perfused liver tissues. Overall, the glutathionylation pathway was found to account for only 8.7% of the disposition of 4-HNE, whereas catabolism to acetyl-CoA, propionyl-CoA, and formate represented the major detoxification pathway.  相似文献   

20.
Bacterial lipopolysaccharide (LPS) stimulation of macrophages and inflammation via the Toll-like receptor 4 (TLR4) signaling pathway through NF-κΒ generates reactive oxygen species (ROS) and proinflammatory cytokines such as IL-1β, IL-6, and TNFα. Because glutathione transferase Omega 1-1 (GSTO1-1) can catalyze redox reactions such as the deglutathionylation of proteins and has also been implicated in the release of IL-1β we investigated its role in the development of LPS-mediated inflammation. Our data show that shRNA knockdown of GSTO1-1 in macrophage-like J774.1A cells blocks the expression of NADPH oxidase 1 and the generation of ROS after LPS stimulation. Similar results were obtained with a GSTO1-1 inhibitor. To maintain high ROS levels during an inflammatory response, LPS stimulation causes the suppression of enzymes such as catalase and glutathione peroxidase that protect against oxidative stress. The knockdown of GSTO1-1 also attenuates this response. Our data indicate that GSTO1-1 needs to be catalytically active and mediates its effects on the LPS/TLR4 inflammatory pathway upstream of NF-κΒ. These data suggest that GSTO1-1 is a novel target for anti-inflammatory intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号