首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium.  相似文献   

2.
3.
A fluorescence method has been developed for accurate and instantaneous measurement of transepithelial diffusional water permeability (Pd) in perfused kidney tubules based on the sensitivity of the fluorophore aminonapthelane trisulfonic acid (ANTS) to solution H2O/D2O content. The fluorescence of ANTS was 3.2-fold lower in an H2O buffer than in a D2O buffer. The response of ANTS fluorescence to a change in solution H2O/D2O content occurred in less than 1 ms and was due to a collisional quenching mechanism. Isolated cortical (CCT) and outer medullary (OMCT) collecting tubules from rabbit were perfused with an isosmotic D2O buffer at specified lumen flow rates (2-100 nl/min); tubules were bathed in isosmotic H2O or D2O buffers in which vasopressin (VP) could be added rapidly. Lumen fluorescence was monitored by quantitative epifluorescence microscopy at 380 +/- 5 nm excitation and greater than 530 emission wavelengths. Pd was determined from tubule geometry, lumen flow, ANTS fluorescence, and ANTS fluorescence vs. H2O/D2O calibration relation. The instrument response time for a change in bath H2O/D2O content was less than 4 s. At 37 degrees C, Pd values (mean +/- SE in cm/s x 10(4] were 6.4 +/- 1.0 (-VP, n = 9) and 14.3 +/- 1.1 (+250 microU/ml bath VP, n = 9) in the CCT, and 5.8 +/- 1.0 (-VP, n = 6) and 15.3 +/- 2.0 (+VP, n = 6) in the OMCT; at 23 degrees C, Pd was 5.1 +/- 0.6 (-VP, n = 4) and 7.8 +/- 0.6 (+VP, n = 4) in the CCT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
During postnatal maturation, there is an increase in renal brush border membrane vesicle (BBMV) osmotic water permeability and a parallel increase in aquaporin-1 (AQP1) protein abundance. The mechanisms responsible for these changes remain unknown. Because serum glucocorticoid levels rise postnatally and have previously been linked to other maturational changes in renal function, we examined the effects of glucocorticoids on osmotic (Pf) and diffusional (P(DW)) water permeability and AQP1 protein abundance of renal BBMV. Neonatal rabbits were treated with dexamethasone (10 microg/100 g) for three days and compared with control neonates and adults. Pf and P(DW) were measured at 20 degrees C with a stopped-flow apparatus using light-scattering and aminonaphthalene trisulfonic acid (ANTS) fluorescence, respectively. Pf was significantly higher in BBMV from dexamethasone-treated neonates compared with vehicle-treated neonates, but remained lower than in BBMV from adults (P<0.05). P(DW) in dexamethasone and vehicle-treated neonatal BBMV was lower than in adult BBMV. Pf/P(DW) ratio increased from neonate (5.1+/-0.3) to dexamethasone (7.0+/-0.1) and adult BBMV (6.3+/-0.1). AQP1 expression was increased by dexamethasone treatment to adult levels. Membrane fluidity, which is inversely related to generalized polarization (GP) of steady-state laurdan fluorescence, was significantly higher in neonatal BBMV than both dexamethasone and adult BBMV (GP: neonate 0.285+/-0.002, dexamethasone treatment 0.302+/-0.006, and adult 0.300+/-0.005; P<0.05). These combined results show that dexamethasone-treatment during days 4-7 of life increases BBMV water permeability despite a decrease in membrane fluidity. This occurs by increasing channel-mediated water transport, as reflected in an increase in AQP1 protein abundance and a higher Pf/P(DW) ratio. This mimics the maturational changes and suggests a physiological role for glucocorticoids in maturation of proximal tubule water transport.  相似文献   

5.
Total internal reflection (TIR) microfluorimetry was established as a method to measure continuously the volume of adherent cells and applied to measure membrane permeabilities in cells transfected with water channel homologs. Cytosol was labeled with the membrane-impermeant fluorophore calcein. Fluorescence was excited by the TIR evanescent field in a thin section of cytosol (approximately 150 nm) adjacent to the cell-substrate interface. Because cytosolic fluorophore number per cell remains constant, the TIR fluorescence signal should be inversely related to cell volume. For small volume changes in Sf-9 and LLC-PK1 cells, relative TIR fluorescence was nearly equal to inverse relative cell volume; deviations from the ideal were modeled theoretically. To measure plasma membrane osmotic water permeability, Pf, the time course of osmotically induced cell volume change was inferred from the TIR fluorescence signal. LLC-PK1 cells expressing the CHIP28 water channel had an HgCl2-sensitive, threefold increase in Pf compared to nontransfected cells (Pf = 0.0043 cm/s at 10 degrees C). Solute permeability was measured from the TIR fluorescence time course in response to solute gradients. Glycerol permeability in Sf-9 cells expressing the water channel homolog GLIP was (1.3 +/- 0.2) x 10(-5) cm/s (22 degrees C), greater than that of (0.36 +/- 0.04) x 10(-5) cm/s (n = 4, p < 0.05) for control cells, indicating functional expression of GLIP. Water and urea permeabilities were similar in GLIP-expressing and control cells. The TIR method should be applicable to the study of water and solute permeabilities and cell volume regulation in cells of arbitrary shape and size.  相似文献   

6.
Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITC-dextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 μm away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury.  相似文献   

7.
P Y Chen  D Pearce  A S Verkman 《Biochemistry》1988,27(15):5713-5718
Quantitative determination of rapid water and solute transport and solute reflection coefficients by light-scattering methods is complicated by dependence of vesicle or cell light scattering on nonvolume factors including solution refractive index, cell motion, and membrane aggregation. To overcome these difficulties, a fluorescence technique has been developed to measure accurately (1) osmotic water permeability (Pf), (2) solute permeability (Ps), and (3) solute reflection coefficient (sigma). The time course of vesicle volume is determined by the self-quenching of entrapped fluorescein sulfonate (FS), the best of a series of dyes screened for self-quenching, brightness, and vesicle loading/trapping. To validate the method, rabbit renal brush border vesicles (BBV) were loaded with 1-10 mM FS for 12 h at 4 degrees C and washed to remove extravesicular FS. FS leakage occurred over greater than 6 h at 4 degrees C and greater than 30 min at 23 degrees C. FS fluorescence vs vesicle volume was calibrated from the time course of fluorescence decrease (excitation 470 nm, emission greater than 515 nm) in response to a series of inward osmotic gradients in a stopped-flow apparatus. At 23 degrees C Pf was 0.005 +/- 0.001 cm/s, independent of osmotic gradient size, and inhibited 67% by 0.5 mM HgCl2. Urea Ps was 2 x 10(-6) cm/s with sigma 0.95-1.00 on the basis of the fluorescence time course analysis and the extravesicular [urea] required to obtain zero initial volume flow (null method) when vesicles were loaded with sucrose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The pre-steady-state kinetics of the vasopressin-induced increase in collecting tubule osmotic water permeability (Pf) has been measured by a new fluorescence technique. Isolated cortical collecting tubules (CCT) from rabbit kidney were perfused with physiological buffers containing the impermeant fluorophores fluorescein sulfonate (FS) and pyrenetetrasulfonic acid (PTSA). Tubules were subject to a 120 mOsm bath-to-lumen osmotic gradient in the presence and absence of 250 microU/ml vasopressin. The magnitude of transepithelial volume flow was determined from the self-quenching of FS, or from the ratio of PTSA/FS fluorescence, measured at 380 nm excitation and 420 +/- 10 nm (PTSA) and greater than 530 nm (FS) emission wavelengths. Pf was calculated from the magnitude of transepithelial volume flow, lumen and bath osmolarities, lumen perfusion rate, and tubule geometry. The instrument response time for a change in bath osmolality was less than 3 s. At 37 degrees C, CCT Pf was (in units of cm/s x 10(4] 13 +/- 2 (mean +/- SE, 16 tubules) before, and 227 +/- 10 after addition of vasopressin to the bath. CCT Pf began to increase in 23 +/- 3 s after vasopressin addition and was half-maximal after 186 +/- 20 s. At 23 degrees C, Pf was 9 +/- 1 (seven tubules) before, and 189 +/- 12 after vasopressin addition. Pf began to increase in 40 +/- 4 s and was half-maximal after 195 +/- 35 s. After vasopressin removal from the bath, Pf decreased to its baseline value with a half-time of 14 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hydrophilic solute transport across rat alveolar epithelium   总被引:1,自引:0,他引:1  
Diffusional fluxes of a series of hydrophilic nonelectrolytes (molecular radii ranging from 0.15 to 0.57 nm) were measured across the alveolocapillary barrier in the isolated perfused fluid-filled rat lung. Radiolabeled solutes were lavaged into the distal air spaces of isolated Ringer-perfused lungs, and apparent permeability-surface area products were calculated from the rates of isotope appearance in the recirculating perfusate. These data were used to estimate theoretical equivalent pore radii in the alveolar epithelium, with the assumption of diffusive flow through water-filled cylindrical pores. The alveolar epithelium is best characterized by two pore populations, with small pores (radius 0.5 nm) occupying 98.7% of total pore area and larger pores (radius 3.4 nm) occupying 1.3% of total pore area. Net water flow out of the alveolar space was measured by including an impermeant solute (dextran) in the lavage fluid and measuring its concentration in the alveolar space as a function of time. Under control conditions, net water flow averaged 167 nl/s. When 24 microM terbutaline was added to the perfusate, net water flow increased significantly to 350 nl/s (P less than 0.001). Terbutaline had no effect on the fluxes of either glycerol (which traverses the small pore pathway) or sucrose (which traverses the large pore pathway). These findings indicate that the intact mammalian alveolar epithelium is complex and highly resistant to the flow of solutes and water.  相似文献   

10.
The failure of hydrodynamic analysis to define pore size in cell membranes   总被引:2,自引:0,他引:2  
The equivalent pore theory predicts that the size of water transporting pores can be calculated from the ratio of osmotic (Pf, cm . s-1) to diffusive (Pd, cm . s-1) water permeability. Determinations of Pf and Pd in human red cells within the last thirty years have increased the ratio of Pf to Pd. According to the equivalent pore theory the pore diameter has increased from 9 A to 25 A. A pore diameter of 25 A is not compatible with the permeability characteristics of the red cell membrane. We conclude that the equivalent pore theory fails to determine pore size in red blood cells. We suggest that water transporting pores in human red cells transport water molecules in a single file fashion.  相似文献   

11.
Osmotic and diffusive water permeability coefficients Pf and Pd were measured for lipid vesicles of 100-250 nm diameter composed of a variety of phospholipids with different head groups and fatty acyl chains. Two different methods were applied: the H2O/D2O exchange technique for diffusive water flow, and the osmotic technique for water flux driven by an osmotic gradient. For phosphatidylcholines in the liquid-crystalline state at 70 degrees C, permeability constants Pd between 3.0 and 5.2.10(-4) cm/s and ratios Pf/Pd 7 and 23 were observed. The observation of a permeability maximum in the phase transition region and the fact that osmotically driven water flux is higher than diffusive water exchange suggest that water is diffusing through small transient pores arising from density fluctuations in the bilayers. The Pd values depend on the nature of the head group, on the chemical structure of the chains, and on the type of chain linkage. In the case of charged lipids, the ionic strength of the solution has a strong influence. For phosphatidylethanolamines, phosphatidic acids, and ether phosphatidylcholines, permeability constants Pd were considerably lower (2-4.10(-6) cm/s at 70 degrees C). For liquid-crystalline phosphatidylcholines, a strong reduction of Pd after addition of ethanol was observed (2-4.10(-6) cm/s at 70 degrees C). The experimental values are discussed in connection with different permeation models.  相似文献   

12.
Several methodologies have been developed to assessalveolocapillary membrane permeability in acute lung injury. Thepurpose of this study was to determine the reliability of FITC-dextran compared with radioactive tracers to assess lung permeability alterations. After intraperitoneal administration of-naphthylthiourea (ANTU, 50 mg/kg) or DMSO-ANTU vehicle, the animalswere euthanized and their lungs were studied in an isolated-lungpreparation. FITC-dextran or radiolabeled tracers were added to theperfusate. At 2 h the bronchoalveolar lavage (BAL) fluid from the ANTUgroup showed a significantly greater amount of fluorescence in thesupernatant after centrifugation of BAL fluid compared with the DMSOgroup. Consistent results were observed with the radioactive tracers: there was an increase in extravascular albumin space and extravascular lung water compared with the control group. No cleavage of the FITCfrom the dextran molecule was evident by chromatography comparing samples recovered from the BAL fluid to the pure FITC-dextran molecule.In conclusion, measurement of FITC-dextran in the supernatant of BALfluid after intravascular administration is a reliable method ofassessing lung permeability changes in vivo and ex vivo.

  相似文献   

13.
Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume was measured by 45 degrees light scattering using an inverted microscope; measurement accuracy was validated by confocal imaging microscopy. The time required for greater than 90% fluid exchange was less than 1 s. In response to a decrease in perfusate osmolality from 300 to 210 mosM, cells swelled without lag at an initial rate of 4.5%/s, corresponding to a water permeability coefficient of (6.3 +/- 0.4) x 10(-3) cm/s (SE, n = 20, 23 degrees C), assuming a cell surface-to-volume ratio of 4,400 cm-1. The initial rate of cell swelling was proportional to osmotic gradient size, independent of perfusate viscosity, and increased by amphotericin B (25 micrograms/ml), and had an activation energy of 10.0 +/- 1 kcal/mol (12-39 degrees C). The compounds phloretin (20 microM) and cytochalasin B (2.5 micrograms/ml) inhibited glucose transport by greater than 85% but did not influence Pf in paired experiments in which Pf was measured before and after inhibitor addition. The mercurials HgCl2 (0.1 mM) and p-chloromercuribenzoate (1 mM) did not inhibit Pf. A stopped-flow light scattering technique was used to measure Pf independently in J774 macrophages grown in suspension culture. Pf in suspended cells was (4.4 +/- 0.3) x 10(-3) cm/s (assuming a surface-to-volume ratio of 8,800 cm-1), increased more than threefold by amphotericin B, and not inhibited by phloretin and cytochalasin B under conditions of strong inhibition of glucose transport. The glucose reflection coefficient was 0.98 +/- 0.03 as measured by induced osmosis, assuming a unity reflection coefficient for sucrose. These results establish a quantitative method for measurement of osmotic water transport in adherent cultured cells and provide evidence that glucose transporters are not involved in the water transporting pathway.  相似文献   

14.
Vasopressin (VP) increases the water permeability of the toad urinary bladder epithelium by inducing the cycling of vesicles containing water channels to and from the apical membrane of granular cells. In this study, we have measured several functional characteristics of the endosomal vesicles that participate in this biological response to hormonal stimulation. The water, proton, and urea permeabilities of endosomes labeled in the intact bladder with fluorescent fluid-phase markers were measured. The diameter of isolated endosomes labeled with horse-radish peroxidase was 90-120 nm. Osmotic water permeability (Pf) was measured by a stopped-flow fluorescence quenching assay (Shi, L.-B., and A. S. Verkman. 1989. J. Gen. Physiol. 94:1101-1115). The number of endosomes formed when bladders were labeled in the absence of a transepithelial osmotic gradient increased with serosal [VP] (0-50 mU/ml), and endosome Pf was very high and constant (0.08-0.10 cm/s, 18 degrees C). When bladders were labeled in the presence of serosal-to-mucosal osmotic gradient, the number of functional water channels per endosome decreased (at [VP] = 0.5 mU/ml, Pf = 0.09 cm/s, 0 osmotic gradient; Pf = 0.02 cm/s, 180 mosmol gradient). Passive proton permeability was measured from the rate of pH decrease in voltage-clamped endosomes in response to a 1 pH unit gradient (pHin = 7.5, pHout = 6.5). The proton permeability coefficient (PH) was 0.051 cm/s at 18 degrees C in endosomes containing the VP-sensitive water channel; PH was not different from that measured in vesicles not containing water channels. Measurement of urea transport by the fluorescence quenching assay gave a urea reflection coefficient of 0.97 and a permeability coefficient of less than 10(-6) cm/s. These results demonstrate: (a) VP-induced endosomes from toad urinary bladder have extremely high Pf. (b) In states of submaximal bladder Pf, the density of functional water channels in endosomes in constant in the absence of an osmotic gradient, but decreases in the presence of a serosal-to-mucosal gradient, suggesting that the gradient has a direct effect on the efficiency of packaging of water channels into endosomes. (c) The VP-sensitive water channel does not have a high proton permeability. (d) Endosomes that cycle the water channel do not contain urea transporters. These results establish a labeling procedure in which greater than 85% of labeled vesicles from toad urinary bladder are endosomes that contain the VP-sensitive water channel in a functional form.  相似文献   

15.
This study presents experiments related to the role of solvent drag and solute drag in the transmembrane movement of nonelectrolytes in a perfused rat intestine preparation. Conditions were chosen to simulate the effects of luminal hyperosmolarity on the permeability of tracer solutes. Data are presented on net water flux, transepithelial potentials, and lumen-to-blood and blood-to-lumen tracer solute movements during control electrolyte perfusion and after making the perfusate hyperosmotic. The results indicate that both solvent drag and solute drag can play significant roles in the transepithelial movement of solute and solute permeabilities in the rat ileum preparation. It is suggested that the potential roles of solvent drag and solute drag should be accounted for or considered during the characterization of the mechanisms of biological membrane function.  相似文献   

16.
The mechanisms of water transport across the rabbit renal proximal convoluted tubule were approached by measuring osmotic permeabilities and solute reflection coefficients of the brush-border and the basolateral membranes. Plasma and intracellular membrane vesicles were isolated from rabbit renal cortex by centrifugation on a Percoll gradient. Three major turbidity bands were obtained: a fraction of purified basolateral membranes (BLMV), the two others being brush-border (BBMV) and endoplasmic reticulum (ERMV) membrane vesicles. The osmotic permeability (Pf) of the three types of vesicle was measured using stop-flow techniques and their geometry was determined by quasi-elastic light scattering. Pf was equal to 123 +/- 8 microns/s (n = 10) for BBMV, 166 +/- 10 microns/s (n = 10) for BLMV and 156 +/- 9 microns/s (n = 4) for ERMV (T = 26 degrees C). A transcellular water permeability, per unit of apical surface area, of 71 microns/s was calculated considering that the luminal and the basolateral membranes act as two conductances in series. This value is in close agreement, after appropriate normalizations, with previously reported transepithelial water permeabilities obtained using in vitro microperfusion techniques thus supporting the hypothesis of a predominantly transcellular route for water flow across rabbit proximal convoluted tubule. The addition of 0.4 mM HgCl2, a sulfhydryl reagent, decreased Pf about 60% in three types of membrane providing evidence for the existence of proteic pathways. NaCl and KCl reflection coefficients were measured and found to be close to one for plasma and intracellular membranes suggesting that the water channels are not shared by salts.  相似文献   

17.
18.
The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (J(v)) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. J(v) in wild-type mice varied linearly with osmotic gradient size (4.4 x 10(-5) cm(3) s(-1) mOsm(-1)) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H(2)O outflow pressure, the filtration coefficient was 4.7 cm(3) s(-1) mOsm(-1) and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. J(v) were (cm(3) s(-1) mOsm(-1) x 10(-5), SEM, n = 7-12 mice): 3.8 +/- 0. 4 (wild type), 0.35 +/- 0.02 (AQP1 null), 3.7 +/- 0.4 (AQP4 null), and 0.25 +/- 0.01 (AQP1/AQP4 null). The significant reduction in P(f) in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 +/- 0.2-fold (SEM, five mice) reduced P(f) in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a simple gravimetric method to quantify osmosis and filtration in intact mouse lung and provide direct evidence for a contribution of the distal airways to airspace-to-capillary water transport.  相似文献   

19.
Blue dextran (BD), which binds to proteins on the pulmonary endothelial surface and to plasma albumin, was used in isolated perfused dog lung lobe experiments to address the question: do changes in perfusate flow rate cause changes in perfused vascular surface area? When BD was added to a protein-free perfusate under zone 3 conditions at a high flow rate (15.8 +/- 0.7 ml/s), it was adsorbed by the endothelial surface. Then by changing the perfusate entering the lobe to an albumin-containing perfusate, the BD was eluted from the perfused surface by competitive binding to the perfusate albumin. The amount of BD eluted was measured in three experiments. In experiment 1, elution of the BD by the perfusate albumin was initiated after a balloon had been inflated within the lobar arterial tree to occlude a portion of the lobar vascular bed containing BD. Then the balloon was deflated, permitting albumin perfusate to perfuse the previously occluded part of the lobe. In experiment 2, BD elution began at a flow rate of 3 +/- 0.1 ml/s under zone 3 conditions and continued after the high-flow zone 3 conditions were reestablished. In experiment 3, the BD elution began at a flow rate of 4.2 +/- 0.7 ml/s under zone 2 conditions and continued after the high-flow zone 3 conditions were reestablished. Balloon inflation reduced the amount of BD recovered by 43%, demonstrating that a decrease in perfused vascular surface area could decrease BD recovery.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The apical membrane of mammalian proximal tubule undergoes rapid membrane cycling by exocytosis and endocytosis. Osmotic water and ATP- driven proton transport were measured in endocytic vesicles from rabbit and rat proximal tubule apical membrane labeled in vivo with the fluid phase marker fluorescein-dextran. Osmotic water permeability (Pf) was determined from the time course of fluorescein-dextran fluorescence after exposure of endosomes to an inward osmotic gradient in a stopped- flow apparatus. Pf was 0.009 (rabbit) and 0.029 cm/s (rat) (23 degrees C) and independent of osmotic gradient size. Pf in rabbit endosomes was inhibited reversibly by HgCl2 (KI = 0.2 mM) and had an activation energy of 6.4 +/- 0.5 kcal/mol (15-35 degrees C). Endosomal proton ATPase activity was measured from the time course of internal pH, measured by fluorescein-dextran fluorescence, after the addition of external ATP. Endosomes contained an ATP-driven proton pump that was sensitive to N-ethylmaleimide and insensitive to vanadate and oligomycin. In response to saturating [ATP] the pump acidified the endosomal compartment at a rate of 0.17 (rat) and 0.029 pH unit/s (rabbit); at an external pH of 7.4, the steady-state pH was 6.4 (rat) and 6.5 (rabbit). To examine whether water channels and the proton ATPase were present in the same endosome, the time course of fluorescein-dextran fluorescence was measured in response to an osmotic gradient in the presence and absence of ATP. ATP did not alter endosome Pf, but decreased the amplitude of the fluorescence signal by 43 +/- 3% (rabbit) and 47 +/- 4% (rat).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号