首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   

3.
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.  相似文献   

4.
Apolipoprotein E (apoE) is a 34-kDa exchangeable apolipoprotein that regulates metabolism of plasma lipoproteins by functioning as a ligand for members of the LDL receptor family. The receptor-binding region localizes to the vicinity of residues 130-150 within its independently folded 22-kDa N-terminal domain. In the absence of lipid, this domain exists as a receptor-inactive, globular four-helix bundle. Receptor recognition properties of this domain are manifest upon lipid association, which is accompanied by a conformational change in the protein. Fluorescence resonance energy transfer has been used to monitor helix repositioning, which accompanies lipid association of the apoE N-terminal domain. Site-directed mutagenesis was used to replace naturally occurring Trp residues with phenylalanine, creating a Trp-null apoE3 N-terminal domain (residues 1-183). Subsequently, tyrosine residues in helix 2, helix 3, or helix 4 were converted to Trp, generating single Trp mutant proteins. The lone cysteine at position 112 was covalently modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, which serves as an energy acceptor from excited tryptophan residues. Fluorescence resonance energy transfer analysis of apoE N-terminal domain variants in phospholipid disc complexes suggests that the helix bundle opens to adopt a partially extended conformation. A model is presented that depicts a tandem arrangement of the receptor-binding region of the protein in the disc complex, corresponding to its low density lipoprotein receptor-active conformation.  相似文献   

5.
In this paper, we report that SB202190 alone, a specific inhibitor of p38(MAPK), induces low density lipoprotein (LDL) receptor expression (6-8-fold) in a sterol-sensitive manner in HepG2 cells. Consistent with this finding, selective activation of the p38(MAPK) signaling pathway by expression of MKK6b(E), a constitutive activator of p38(MAPK), significantly reduced LDL receptor promoter activity. Expression of the p38(MAPK) alpha-isoform had a similar effect, whereas expression of the p38(MAPK) betaII-isoform had no significant effect on LDL receptor promoter activity. SB202190-dependent increase in LDL receptor expression was accompanied by induction of p42/44(MAPK), and inhibition of this pathway completely prevented SB202190-induced LDL receptor expression, suggesting that p38(MAPK) negatively regulates the p42/44(MAPK) cascade and the responses mediated by this kinase. Cross-talk between these kinases appears to be one-way because modulation of p42/44(MAPK) activity did not affect p38(MAPK) activation by a variety of stress inducers. Taken together, these findings reveal a hitherto unrecognized one-way communication that exists between p38(MAPK) and p42/44(MAPK) and provide the first evidence that through the p42/44(MAPK) signaling cascade, the p38(MAPK) alpha-isoform negatively regulates LDL receptor expression, thus representing a novel mechanism of fine tuning cellular levels of cholesterol in response to a diverse set of environmental cues.  相似文献   

6.
Apolipoprotein E (apoE) serves as a ligand for the low density lipoprotein receptor (LDLR) only when bound to lipid. The N-terminal domain of lipid-free apoE exists as globular 4-helix bundle that is conferred with LDLR recognition ability after undergoing a lipid binding-induced conformational change. To investigate the structural basis for this phenomenon, site-directed spin label electron paramagnetic resonance spectroscopy experiments were conducted, focusing on the region near the C-terminal end of helix 4 (Ala-164). Using C112S apoE-N-terminal as template, a series of single cysteine substitution variants (at sequence positions 161, 165, 169, 173, 176, and 181) were produced, isolated, and labeled with the nitroxide probe, methane thiosulfonate. Electron paramagnetic resonance analysis revealed that lipid association induced fixed secondary structure in a region of the molecule known to exist as random coil in the lipid-free state. In a complementary approach, site-directed fluorescence analysis using an environmentally sensitive probe indicated that the lipid-induced transition of this region of the protein to alpha helix was accompanied by relocation to a more hydrophobic environment. In studies with full-length apoE single Cys variants, a similar random coil to stable backbone transition was observed, consistent with the concept that lipid interaction induced an extension of helix 4 beyond the boundary defining its lipid-free conformation. This structural transition likely represents a key conformational change necessary for manifestation of the LDLR recognition properties of apoE.  相似文献   

7.
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.  相似文献   

8.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

9.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

10.
Apolipoprotein A-V (apoA-V) is present in low amounts in plasma and has been found to modulate triacylglycerol levels in humans and in animal models. ApoA-V displays affinity for members of the low density lipoprotein receptor (LDL-R) gene family, known as the classical lipoprotein receptors, including LRP1 and SorLA/LR11. In addition to LDL-A binding repeats, the mosaic receptor SorLA/LR11 also possesses a Vps10p domain. Here we show that apoA-V also binds to sortilin, a receptor from the Vsp10p domain gene family that lacks LDL-A repeats. Binding of apoA-V to sortilin was competed by neurotensin, a ligand that binds specifically to the Vps10p domain. To investigate the biological fate of receptor-bound apoA-V, binding experiments were conducted with cultured human embryonic kidney cells transfected with either SorLA/LR11 or sortilin. Compared with nontransfected cells, apoA-V binding to SorLA/LR11- and sortilin-expressing cells was markedly enhanced. Internalization experiments, live imaging studies, and fluorescence resonance energy transfer analyses demonstrated that labeled apoA-V was rapidly internalized, co-localized with receptors in early endosomes, and followed the receptors through endosomes to the trans-Golgi network. The observed decrease of fluorescence signal intensity as a function of time during live imaging experiments suggested ligand uncoupling in endosomes with subsequent delivery to lysosomes for degradation. This interpretation was supported by experiments with (125)I-labeled apoA-V, demonstrating clear differences in degradation between transfected and nontransfected cells. We conclude that apoA-V binds to receptors possessing LDL-A repeats and Vsp10p domains and that apoA-V is internalized into cells via these receptors. This could be a mechanism by which apoA-V modulates lipoprotein metabolism in vivo.  相似文献   

11.
The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) is described as a platelet agonist able to induce aggregation and to increase intracellular calcium. In the present report we have confirmed these data and demonstrated that the inhibitor of p38MAPK SB203580 and the inhibitor of cPLA(2) metabolism ETYA affect both these parameters. Thus, we aimed to define the role of p38MAPK/cytosolic phospholipase A(2) (cPLA(2)) pathway in 2-AG-induced human platelet activation. p38MAPK activation was assayed by phosphorylation. cPLA(2) activation was assayed by phosphorylation and as arachidonic acid release and thromboxane B(2) formation. It was shown that 2-AG in a dose- and time-dependent manner activates p38MAPK peaking at 10 μM after 1 min of incubation. The 2-AG effect on p38MAPK was not impaired by apyrase, indomethacin or RGDS peptide but it was significantly reduced by SR141716, specific inhibitor of type-1 cannabinoid receptor and unaffected by the specific inhibitor of type-2 cannabinoid receptor SR144528. Moreover, the incubation of platelets with 2-AG led to the phosphorylation of cPLA(2) and its activation. Platelet pretreatment with SB203580, inhibitor of p38MAPK, abolished both cPLA(2) phosphorylation and activation. In addition SR141716 strongly impaired cPLA(2) phosphorylation, arachidonic acid release and thromboxane B(2) formation, whereas SR144528 did not change these parameters. Finally platelet stimulation with 2-AG led to an increase in free oxygen radical species. In conclusion, data provide insight into the mechanisms involved in platelet activation by 2-AG, indicating that p38MAPK/cPLA(2) pathway could play a relevant role in this complicated process.  相似文献   

12.
Lipoprotein lipase (LPL) efficiently mediates the binding of lipoprotein particles to lipoprotein receptors and to proteoglycans at cell surfaces and in the extracellular matrix. It has been proposed that LPL increases the retention of atherogenic lipoproteins in the vessel wall and mediates the uptake of lipoproteins in cells, thereby promoting lipid accumulation and plaque formation. We investigated the interaction between LPL and low density lipoproteins (LDLs) with special reference to the protein-protein interaction between LPL and apolipoprotein B (apoB). Chemical modification of lysines and arginines in apoB or mutation of its main proteoglycan binding site did not abolish the interaction of LDL with LPL as shown by surface plasmon resonance (SPR) and by experiments with THP-I macrophages. Recombinant LDL with either apoB100 or apoB48 bound with similar affinity. In contrast, partial delipidation of LDL markedly decreased binding to LPL. In cell culture experiments, phosphatidylcholine-containing liposomes competed efficiently with LDL for binding to LPL. Each LDL particle bound several (up to 15) LPL dimers as determined by SPR and by experiments with THP-I macrophages. A recombinant NH(2)-terminal fragment of apoB (apoB17) bound with low affinity to LPL as shown by SPR, but this interaction was completely abolished by partial delipidation of apoB17. We conclude that the LPL-apoB interaction is not significant in bridging LDL to cell surfaces and matrix components; the main interaction is between LPL and the LDL lipids.  相似文献   

13.
Apolipoprotein (apo) E stimulates the secretion of very low density lipoproteins (VLDLs) by an as yet unknown mechanism. Recently, a working mechanism for apoE was proposed (Twisk, J., Gillian-Daniel, D. L., Tebon, A., Wang, L., Barrett, P. H., and Attie, A. D. (2000) J. Clin. Invest. 105, 521-532) in which apoE prevents the inhibitory action of the low density lipoprotein receptor (LDLr) by binding to it. We have first tested whether this newly described effect of the LDLr on VLDL secretion, obtained in vitro, is also observed in vivo. In LDLr knockout mice (LDLr-/-), the production of VLDL triglycerides and apoB was 30% higher than that in controls. Also the ratio of apoB100:apoB48 secretion was increased in the LDLr-/- mice. The composition of nascent VLDL was similar in both strains. To test whether the action of apoE depends on the presence of the LDLr, VLDL production was measured in LDLr-/- and apoE-/- LDLr-/- mice. Deletion of apoE on a LDLr-/- background still caused a 50% decrease of VLDL triglycerides and apoB production. The composition of nascent VLDL was again similar for both strains. We conclude that the effect of apoE on hepatic VLDL production is independent of the presence of the LDLr.  相似文献   

14.
15.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

16.
Mutations in apolipoprotein B (APOB) may reduce binding of low density lipoprotein (LDL) to the LDL receptor and cause hypercholesterolemia. We showed that heterozygotes for a new mutation in APOB have hypobetalipoproteinemia, despite a reduced binding of LDL to the LDL receptor. APOB R3480P heterozygotes were identified among 9,255 individuals from the general population and had reduced levels of apoB-containing lipoproteins. Most surprisingly, R3480P LDL bound with lower affinity to the LDL receptor than non-carrier LDL in vitro, and these results were confirmed by turnover studies of LDL in vivo. In very low density lipoprotein (VLDL) turnover studies, the amount of VLDL converted to LDL in R3480P heterozygotes was substantially reduced, suggesting that this was the explanation for the hypobetalipoproteinemia observed in these individuals. Our findings emphasized the importance of combining in vitro studies with both human in vivo and population-based studies, as in vitro studies often have focused on very limited aspects of complex mechanisms taken out of their natural context.  相似文献   

17.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

18.
Monoclonal antibody 2E8 is specific for an epitope that coincides with the binding site of the low density lipoprotein receptor (LDLR) on human apoE. Its reactivity with apoE variants resembles that of the LDLR: it binds well with apoE3 and poorly with apoE2. The heavy chain complementarity-determining region (CDRH) 2 of 2E8 shows homology to the ligand-binding domain of the LDLR. To define better the structural basis of the 2E8/apoE interaction and particularly the role of electrostatic interactions, we generated and characterized a panel of 2E8 variants. Replacement of acidic residues in the 2E8 CDRHs showed that Asp(52), Glu(53), and Asp(56) are essential for high-affinity binding. Although Asp(31) (CDRH1), Glu(58) (CDRH2), and Asp(97) (CDRH3) did not appear to be critical, the Asp(97) --> Ala variant acquired reactivity with apoE2. A Thr(57) --> Glu substitution increased affinity for both apoE3 and apoE2. The affinities of wild-type 2E8 and variants for apoE varied inversely with ionic strength, suggesting that electrostatic forces contribute to both antigen binding and isoform specificity. We propose a model of the 2E8.apoE immune complex that is based on the 2E8 and apoE crystal structures and that is consistent with the apoE-binding properties of wild-type 2E8 and its variants. Given the similarity between the LDLR and 2E8 in terms of specificity, the LDLR/ligand interaction may also have an important electrostatic component.  相似文献   

19.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号