首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epidemiological studies have shown that regular consumption of fruits and vegetables is associated with reduced risk of chronic diseases. Vegetables can provide vitamins, phenolics, flavonoids, minerals and dietary fibers for optimal health benefits. However, some nutrients contained in many fruits and vegetables cannot meet of the complete nutrition need in the human body. Biotechnology has the potential to improve the nutritional value of crops. Considering the high consumption of romaine lettuce in human diet worldwide, the objective of study is to enhance the contents of vitamin C, phenolics and antioxidant activity in lettuce leaves by genetic engineering techniques. The gene expression level, vitamin C content, total phenolics, as well as total and cellular antioxidant activities were analyzed by real-time PCR, HPLC, Folin–Ciocalteu, Hydro-PSC and CAA methods, respectively. The bio-fortification of genetically engineered lettuce increased vitamin C up to 48.94 ± 1.34 mg/100 g FW following the increased over-expression of At GLDH. This is almost a 3.2-fold increase as the content when compared with wild type lettuce (p < 0.05). In addition, phenolic compounds in transgenic lettuce contained 120.4 ± 1.62 mg GA equiv./100 g FW, almost double the phenolic content of the wild type. Total antioxidant activities were 735.4 ± 47.7 μmol vitamin C equiv./100 g FW, cellular antioxidant activities were 7.33 ± 0.86 μmol quercetin equiv./100 g FW (PBS wash) and 18.14 ± 0.68 μmol quercetin equiv./100 g FW (No PBS wash) in transgenic lettuce, respectively, 1.5, 4 and twofold increases when compared with the wild type. This study suggests that bio-fortification by genetic engineering has great potential to improve vitamin C, phenolic contents and antioxidant activity in lettuce.  相似文献   

2.
This growing interest in the cultivation of Japanese quince Chaenomeles japonica L. results from the potentially beneficial properties of its fruit. Fresh fruits are very firm and too acidic to eat raw, but their bioactive components, distinctive aroma, and high amount of dietary fiber make the fruits well suited for industrial processing. However, not all the properties of the fruit have been investigated. For example, there are no comprehensive reports about the mineral content or potentially harmful effects on liver metabolism. Hence, the purpose of our study was to examine fresh Japanese quince fruit in terms of (1) ascorbic acid, oxalate, fiber, macro- and micronutrients, dry matter, extract, total acidity, antioxidant activity, and phenolic compound levels; and (2) the effect of its extract on in vitro hepatocyte metabolism, measured by the concentration of lipid peroxides (LPO) and reactive oxygen species (ROS) and the severity of apoptosis and necrosis. The fruit of C. japonica had high levels of macro- and microelements, ascorbic acid, phenolic compounds, fiber, and low oxalate levels. Our analysis of macro- and microelements showed that the average content of Fe was 0.516 mg/g, Cu 0.146 mg/g, Zn 0.546 mg/g, Mg 16.729 mg/g, and Ca 22.920 mg/g of fresh fruit. A characteristic feature of the fresh fruit of C. japonica is a high level of polyphenols, which—combined with a high content of vitamin C—affect their high antioxidant potential. In the tested hepatocyte cultures incubated with extract of the Japanese quince, we observed a significant decrease in the concentration of lipid peroxides compared to the control. There were also no signs of increased formation of ROS in the mitochondria of hepatocytes incubated with the extract of quince. Malondialdehyde was strongly negatively correlated with the concentration of Japanese quince extract, which indicates the hepatoprotective properties of Japanese quince. In addition, our analysis of confocal microscopy images showed that the hepatocytes incubated with the extract of Japanese quince at any concentration did not show any signs of apoptosis or necrosis. The aqueous extract of quince fruit has antioxidative and antiapoptotic hepatocytes, thus exerting a hepatoprotective effect.  相似文献   

3.
Tomato is considered as one of the most important sources of nutrients such as lycopene, β-carotene, flavonoids, ascorbic acid (vitamin C) and hydroxyl-cinnamic acid derivatives. The quality and quantity of nutrients in tomato fruits were decreased during the severe infection of Alternaria alternata. The present study deals with the estimation of lycopene, β-carotene, phenolic and ascorbic acid content in tomato fruits which were infected with A. alternata and its toxins such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). The lycopene, β-carotene, ascorbic acid and phenolic content were found lowest in pathogen-infected fruits i.e. (0.66 ± 0.03 mg/g), (0.14 ± 0.01 mg/g), (1.89 ± 0.2 mg/g) and (0.58 ± 0.05 mg/g), respectively, followed by toxins-treated samples as compared to the control. The results concluded that A. alternata mostly affects the nutritional values of tomato fruits due to the combined effect of the toxins.  相似文献   

4.
Early ripening and susceptibility to microbial infection are major postharvest problems in papaya fruits. Being a tropical climacteric fruit, low-temperature storage is not successful in papaya. In this study, we demonstrate the effect of aqueous salicylic acid (1 and 2 mM), nitric oxide (1 and 2 mM), and calcium chloride (1 and 2%) to enhance the papaya shelf life at the ambient conditions with reduced disease incidence. Calcium chloride 2% was the most effective for maintaining postharvest quality. The fruits had good firmness and maintained TSS, acidity, total chlorophyll, free radical scavenging activity and ascorbic acid on the 6th day during ambient storage. Moreover, the weight loss, yellow color development and disease incidence were minimum in calcium chloride 2%, followed by 1% solution of calcium chloride. The nitric oxide (2 mM) maintained higher antioxidant capacity and total phenol content in fruits that was followed by 1 mM salicylic acid during storage. The result suggests that application of calcium chloride 2% could be an easy and effective technique for extending the shelf life without impairing fruit quality during storage.  相似文献   

5.
Two apricot genotypes, 'Gonci magyarkajszi' and 'Preventa' were assayed at three ripening stages for flesh color indices (L*, a*, b*, C* and Ho), contents of total phenolics and vitamin C, and both water- and lipid-soluble antioxidant capacities (ferric reducing antioxidant power; 2,2'-diphenyl-1-picrylhydrazyl scavenging activity; total radical scavenging activity; and Photochem lipid-soluble antioxidant capacity) to compare their dynamics in the accumulation of antioxidant compounds and capacities through ripening. The increase in a*, b* and C* and decrease in Ho during ripening represented a color shift from green to yellow and orange due to carotenoid accumulation. Parallel to carotenoid accumulation, contents of total phenolics and vitamin C and antioxidant capacity increased significantly (p < 0.05) from unripe to fully ripe fruits. More phenolics and vitamin C accumulated in fully ripe fruits of 'Preventa' than 'G?nci magyarkajszi'. The accumulation patterns of these compounds were different: while the vitamin C contents in unripe fruit of 'Preventa' and 'G?nci magyarkajszi' were identical (approx. 6 mg/100 g fresh weight), unripe 'Preventa' contained even more phenolics (approx. 12 mmolGA/l) than fully ripe 'G?nci magyarkajszi' (8 mmolGA/l). Our results confirm that fully ripe 'Preventa' fruits are characterized by outstanding functional properties due to the increased accumulation of vitamin C and phenolics throughout the ripening process.  相似文献   

6.
Efficient preparation of loganin from Cornus officinalis fruits was investigated. First, effect of extraction conditions on loganin yield was measured. The loganin content in C. officinalis extract was greatly affected by ethanol concentration and extraction time whereas extraction temperature exerted relatively little effect. Response surface methodology with Box–Behnken design suggested optimized extraction condition for maximum loganin yield as ethanol concentration, 32.0%; temperature 46.2 °C and extraction time, 46.7 min, which yielded 10.4 μg loganin/mg dried fruit. Next, the effect of maturation stage of C. officinalis fruits on loganin content was investigated. The loganin content in the extract of C. officinalis fruits was decreased as the maturation process. The loganin content in the unripe fruits was 18.0 μg/mg extract whereas reduced to 13.3 μg/mg extract for ripe fruits. Taken together, our present study suggested the importance of extraction condition and maturation stages for efficient preparation of loganin from C. officinalis fruits.  相似文献   

7.
Antioxidant capacity and phenolic compounds (phenolic acids and anthocyanins) of four berry fruits (strawberry, Saskatoon berry, raspberry and wild blueberry), chokecherry and seabuckthorn were compared in the present study. Total phenolic content and total anthocyanin content ranged from 22.83 to 131.88 g/kg and 3.51 to 13.13 g/kg, respectively. 2,2-Diphenyl-1-picryhydrazyl free radical scavenging activity ranged from 29.97 to 78.86%. Chokecherry had the highest antioxidant capacity when compared with berry fruits and seabuckthorn. The highest caffeic acid, gallic acid and trans-cinnamic acid levels were found in chokecherry (6455 mg/kg), raspberry (1129 mg/kg) and strawberry (566 mg/kg), respectively. Caffeic acid was also the major phenolic acid in Saskatoon berry (2088 mg/kg) and wild blueberry (1473 mg/kg). The findings that chokecherry has very high antioxidant capacity and caffeic acid levels, are useful for developing novel value-added antioxidant products and also provide evidence essential for breeding novel cultivars of fruit plants with strong natural antioxidants.  相似文献   

8.
The changes in bioactive molecules (capsaicin, total phenol, total flavonoid, ascorbic acid and β-carotene) and antioxidant potential in Capsicum chinense Jacq. cv. Habanero were examined during nine maturity stages (at 7-day interval from fruit set). The rate of in vivo synthesis of these antioxidants increased progressively with advancing maturity. Capsaicin, ascorbic acid, and β-carotene contents increased about 3, 10, and 9 times, respectively, at 63 days after fruit set (DAFS) while the highest value for total phenol (~330 mg CE/100 g), flavonoid (~138 mg RE/100 g), DPPH radical scavenging activity (~82 %), and metal chelating activity (~75 %) recorded in 42–49 DAFS. Bioactive molecules were positively correlated with radical scavenging and metal chelating activities. The results underline the effect of maturity on the bioactive molecules and antioxidant potential suggesting that fruits at the red stage (42–49 DAFS) are optimal from the nutritional point of view.  相似文献   

9.

Main conclusion

High levels of β-carotene, lycopene, and the rare γ-carotene occur predominantly lipid-dissolved in the chromoplasts of peach palm fruits. First proof of their absorption from these fruits is reported. The structural diversity, the physical deposition state in planta, and the human bioavailability of carotenoids from the edible fruits of diverse orange and yellow-colored peach palm (Bactris gasipaes Kunth) varieties were investigated. HPLC–PDA–MSn revealed a broad range of carotenes, reaching total carotenoid levels from 0.7 to 13.9 mg/100 g FW. Besides the predominant (all-E)-β-carotene (0.4–5.4 mg/100 g FW), two (Z)-isomers of γ-carotene (0.1–3.9 mg/100 g FW), and one (Z)-lycopene isomer (0.04–0.83 mg/100 g FW) prevailed. Approximately 89–94 % of total carotenoid content pertained to provitamin A carotenoids with retinol activity equivalents ranging from 37 to 609 µg/100 g FW. The physical deposition state of these carotenoids in planta was investigated using light, transmission electron, and scanning electron microscopy. The plastids found in both orange and yellow-colored fruit mesocarps were amylo-chromoplasts of the globular type, containing carotenoids predominantly in a lipid-dissolved form. The hypothesis of lipid-dissolved carotenoids was supported by simple solubility estimations based on carotenoid and lipid contents of the fruit mesocarp. In our study, we report first results on the human bioavailability of γ-carotene, β-carotene, and lycopene from peach palm fruit, particularly proving the post-prandial absorption of the rarely occurring γ-carotene. Since the physical state of carotenoid deposition has been shown to be decisive for carotenoid bioavailability, lipid-dissolved carotenoids in peach palm fruits are expected to be highly bioavailable, however, further studies are required.  相似文献   

10.
This study was conducted to analyze the bioactive compounds and in vitro antioxidant capacity of tea infusions prepared from whole and ground medicinal fruits, including gardenia, jujube, magnolia, quince, and wolfberries. The dried medicinal fruit samples were ground, and then passed through a 60‐mesh sieve (pore size, 250 μm). Hot water (80 °C) infusions of whole and ground fruits were examined. In average of both whole and ground tea infusions, the maximum bioactive compounds were found in gardenia (β‐carotene, lycopene, and vitamin C), magnolia (total chlorophyll and anthocyanin), quince (flavonoid), and wolfberries (phenolic), and the maximum antioxidant capacity was found in quince (ABTS and DPPH) and wolfberries (NSA). Whole fruit tea infusions showed a higher brightness than the ground fruit tea infusions. The total chlorophyll, anthocyanin, β‐carotene, lycopene, phenolic, flavonoid, and vitamin C contents were found to be significantly (p≤0.001) higher in the ground fruit tea infusions than in the whole fruit tea infusions; additionally, the ground fruit tea infusions had a higher antioxidant capacity especially ABTS, DPPH and NSA. Therefore, the ground fruit tea infusions appeared to be more powerful with regard to the contents of bioactive compounds and antioxidant capacities than the whole fruit tea infusions.  相似文献   

11.
In this study, we investigated the pathogenicity and patulin production by ten strains of Penicillium expansum on various fruits (apples, apricots, kiwis, plums and peaches) at two (4°C and 25°C) different temperature regimes. All strains caused the infectious rots on all fruits at 4 and 25°C except one strain (PEX 09) at 4°C. Two strains (PEX 20 and PEX 12) out of ten produced the highest amounts of patulin on all fruits tested. The patulin production by P. expansum is high at 25°C compared to 4°C. All strains of P. expansum accumulated patulin ranging from 100–13,200 μg/kg and nine strains ranging from 100–12,100 μg/kg in all fruits at 25°C and 4°C, respectively. Among ten strains of P. expansum, strain PEX 20 produced the greatest amount of patulin on apricots (13,200 μg/kg of rotten fruit) and on apples (12,500 μg/kg) at 25°C after 9 days of incubation. At 4°C, this strain produced 12,100, 12,000, 2,100 and 1,200 μg/kg of patulin on apricots, apples, plums and peaches, respectively, after 45 days of incubation. Strain PEX 12 produced the highest amount of patulin on kiwis (10,700 μg/kg) at 25°C and 10,300 μg/kg at 4°C. Patulin production by P. expansum on peaches and plums at both temperatures were lower than other fruits. The results of this study showed that careful removal of rotten fruits is essential to produce patulin-free fruit juice, since high patulin levels in apricots, apples and kiwis could result in a level greater than 50 μg/kg of this mycotoxin in finished fruit juices, when one contaminated fruit occurs in 264, 250 and 214 fruits, respectively. So, the fruit processors should take care in not using rotten fruits for juice production to avoid the patulin problem worldwide, since this study proved that most important fruits being used for juice production and direct human consumption are susceptible to P. expansum and subsequent patulin production even at low temperatures. This is the first comprehensive report regarding patulin production by different strains of P. expansum on various fruits from Italy at different temperature regimes.  相似文献   

12.
Grapefruits were irradiated with gamma rays at doses of 0.4, 0.8, 1.6 and 3.2 KGy. Irradiated and non-irradiated fruits were soaked in biocides formulated from essential oils of fennel, peppermint and caraway oil. All treated and non-treated fruits were stored at room temperature (20 ± 1°C) for a period of 70 days. Samples were taken every 14 days for different quality determinations. Non-treated fruits were decayed continuously alongside the different storage periods. However, exposing the studied fruits to gamma radiation induced a promising effect for retarding this decay. Moreover, soaking citrus fruits in the formulated biocides induced further interruption of fruit decay. In addition, the applied treatment exhibited other positive effects for keeping the good quality of the studied fruits during storage.  相似文献   

13.
Chayote or chow–chow is an underutilized cucurbit vegetable crop, widely cultivated by farmers in the backyards and Jhum lands for its tender leaves, fruits and tuberous root. In order to initiate crop improvement program in this crop, the present study was undertaken to assess the genetic variations in the 74 chow–chow landraces collected from the North Eastern Hill region of India. Wide variations for fruit colors, fruit length (6.5–21.5 cm), fruit width (4.2–10.7 cm), fruit weight (60–560 g), vitamin-C (2.6–13.8 mg/100 g), reducing sugar (0.18–2.77%), total sugar (1.09–2.94%) and phenol content (0.17–3.85 mg/100 g FW) were recorded among the landraces. All the landraces were also characterized using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. In RAPD analyses, out of 28 primers a total of 198 reproducible amplicons were formed at an average of 7.01 per primer and an overall polymorphism of 88.38%. Eight fragments were specific to landraces with light green fruits. Four fragments were observed to be specific to RCSC-22 (dark green fruits) and another four specific to a RCSC-30 (pale yellow fruits). Out of 30 ISSR, only 5 primers generated a total of 32 reproducible amplicons with an average of 6.4 per primer and overall polymorphism of 62.5%. The pair wise similarity coefficient values ranged from 0.55 to 0.96. The grouping of landraces in cluster analysis was found to be independent of their respective geographic locations. The cuttings of suckers and shoot top (2 months old) treated with indole-3-butyric acid (200 mg l?1) provide an alternative for the conservation of the diverse genetic materials to the researchers.  相似文献   

14.
Salacia chinensis L. has various beneficial properties including antidiabetic and antioxidant activity. The S. chinensis fruit pulp (SCFP) was extracted with four different solvents (Methanol, ethanol, acetone and water) and was screened for total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (AOA). The AOA was assessed by evaluating the 1, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and metal chelating assay. Methanolic SCFP extract exhibited the highest phenolic content (3.20?±?0.12 mg GAE/g FW) whereas, ethanolic extract showed highest flavonoid content (0.31?±?0.68 mg RE/g FW). The methanolic extract possesses highest antioxidant activity towards DPPH (92.44 %), FRAP (1.939 O.D) and metal chelating activity (74.16 %). AOA (DPPH and FRAP) was significantly correlated with TPC. The results indicated that SCFP is a good natural source of antioxidant compounds for use in food and pharmaceutical industry.  相似文献   

15.
以中华猕猴桃(Actinidia chinensis Planch.)黄肉红心新品种‘东红’为材料,对其果实在常温和低温贮藏方式下的生理及品质变化进行了研究。结果表明,果实硬度在2种贮藏方式下均呈先快速下降后缓慢下降的趋势。可溶性固形物含量、总糖含量、固酸比和糖酸比等4个品质指标均表现为先快速上升后维持在较高水平(低温贮藏下)或继续小幅上升(常温贮藏下)的趋势。总酸含量整体上均呈现逐渐下降之势,至果实软熟时稳定在0.9%的水平。维生素C含量却在常温贮藏下基本呈逐渐上升之势,而在低温贮藏下大致表现为先上升后轻微下降。果实失重率和腐烂率均随贮藏时间的延长而逐渐增加,在常温贮藏时上升较快,而在低温贮藏时上升非常缓慢。总体而言,‘东红’果实主要的生理和品质指标在常温贮藏2~3周后或低温贮藏9周后发生明显转变,果实进入可食用阶段;并且继续低温贮藏15周内还能较好地保持果实品质,耐贮性较好。  相似文献   

16.
The aim of this study was to determine the effect of a polyphenol product (PP) (Proviox) and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature. The experimental materials comprised 120 ROSS 308 broilers (6 treatments, 10 replications, 2 birds per replication). Dietary supplementation with vitamin E and PP was applied in the following experimental design: group I (negative control) – without supplementation; group II (positive control) – without supplementation; group III – supplementation with 100 mg vitamin E/kg; group IV – 200 mg vitamin E/kg; group V – 100 mg vitamin E/kg and 100 mg PP/kg; group VI – 200 mg PP/kg. In groups II–VI, broiler chickens aged 21–35 d were exposed to increased temperature (34°C for 10 h daily). In chickens exposed to high temperature, dietary supplementation with antioxidants, mostly PP, improved growth performance parameters, including body weight, body weight gain and feed intake until 28 d of age. Vitamin E added to broiler chicken diets at 200 mg/kg and vitamin E combined with PP was most effective in improving the total antioxidant status of birds, enhancing blood antioxidant enzyme activities and increasing vitamin E concentrations in the liver and breast muscles. Broilers fed diets supplemented with 200 mg/kg of vitamin E alone and vitamin E in combination with PP were characterised by a higher percentage content of breast muscles in the carcass. Dietary supplementation with antioxidants improved the water-holding capacity of meat, reduced natural drip loss and increased the crude ash content of meat. The breast muscles of chickens fed diets supplemented with PP had a lower contribution of yellowness. The breast muscles of chickens receiving diets with 100 mg vitamin E/kg(group III) and diets supplemented with PP (groups V and VI) were characterised by the highest concentrations of polyunsaturated fatty acids. The PP can be a valuable component of diets for broiler chickens exposed to high temperature.  相似文献   

17.
The study aimed to evaluate the effect of cow urine and combination of antioxidants against lindane induced oxidative stress in Swiss mice. Male healthy mice, 8–10 weeks old, weighing 30 ± 5 g were randomly selected and divided into eight groups, namely, control (C); lindane (L); antioxidant (A), antioxidant+lindane (A+L), cow urine (U), cow urine+lindane (U+L), cow urine+antioxidants (U+A) and cow urine+antioxidants+lindane (U+A+L). Group C animals were administered only the vehicle (olive oil); doses selected for other treatments were: lindane: 40 mg/kg b.w.; antioxidants: 125 mg/kg b.w. (vitamin C: 50 mg/kg b.w., vitamin E: 50 mg/kg b.w., α-lipoic acid: 25 mg/kg b.w.) and cow urine: 0.25 ml/kg b.w. In group A+L and U+L antioxidants and cow urine were administered 1 h prior to lindane administration and in group U+A and U+A+L cow urine was administered 10 min before antioxidants. All treatments were administered orally continuously for 60 days. Lindane treated group showed increased lipid peroxidation, whereas glutathione, glutathione peroxidase, superoxide dismutase, catalase, protein and endogenous levels of vitamin C and E were significantly decreased compared to control. Administration of cow urine and antioxidants alleviated the levels of these biochemical parameters.  相似文献   

18.
19.
The acidic-subunit of amarantin, main seed storage protein of Amaranthus hypochondriacus, carrying four antihypertensive biopeptides Val-Tyr was expressed in the fruit of transgenic tomato plants. Immunoblot analyses indicate that the expressed recombinant protein was stably accumulated at levels up to 12.71 % with respect to total protein content of transgenic fruits. There was a remarkable change in total protein content (5–22 % increase) of transgenic tomato fruits compared to non-transformed samples. Specific increases of the essential amino acids valine (31–40 %), tyrosine (29–34 %), isoleucine (21–31 %), leucine (28–31 %) and phenylalanine (28–29 %) were also detected in some transgenic lines versus wild type lines. Protein hydrolysates from transgenic tomato fruits showed in vitro inhibition of the angiotensin converting enzyme, with IC50 values that ranged from 0.376 to 3.241 μg ml?1; this represents an increase of up to 13-fold in the inhibitory activity compared with the protein hydrolysates of non-transformed fruits. These results suggest the possible application of transgenic tomato fruit for massive production of this engineered version of amarantin, which could be especially useful in the prevention and control of hypertension.  相似文献   

20.
Tomato fruits are sensitive to storage at low temperatures after harvest. Under these conditions, the main mechanism induced in fruits is oxidative stress, which can translate as lipid peroxidation and in turn deteriorate fruit quality. The aim of the present work was to investigate whether the effect of a biofortification program with potassium (K) improves the postharvest storage of cherry tomato fruits at 4 °C, through a better antioxidant response. Three K treatments were applied during the crop cycle of the plants: 5, 10, and 15 mM of KCl. The parameters in fruits on the day of harvest and after 21 days of postharvest cold storage at 4 °C, such as activity of lipoxygenase, malondialdehyde, catalase, superoxide dismutase, and the enzymes involved in the AsA–GSH cycle as well as the forms of ascorbate (AsA) and glutathione (GSH), were analyzed. The tomato fruits harvested from plants treated with 15 mM of KCl after 21 days of postharvest at 4 °C showed a lower degree of lipid peroxidation, an effective regeneration of AsA, and the highest pool of this compound in comparison with the other treatments. This response was because it presented the highest ascorbate peroxidase and monodehydroascorbate reductase activity. In addition, the treatments of 10 and 15 mM KCl presented the highest GSH pool, as well as a satisfactory regeneration of this tripeptide. All these results lead to the conclusion that the rate of 15 mM of KCl applied to this tomato variety (Solanum lycopersicum L. cv AsHiari grafted on cv. Maxifort rootstock) is adequate to mitigate the negative effects of postharvest chilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号