首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

2.
Annexin 7 mobilizes calcium from endoplasmic reticulum stores in brain   总被引:1,自引:0,他引:1  
Mobilization of intracellular calcium from inositol-1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum (ER) stores plays a prominent role in brain function. Mice heterozygous for the annexin A7 (Anx7) gene have a profound reduction in IP3 receptor function in pancreatic islets along with defective insulin secretion. We examined IP3-sensitive calcium pools in the brains of Anx7 (+/-) mice by utilizing ATP/Mg(2+)-dependent (45)Ca(2+) uptake into brain membrane preparations and tissue sections. Although the Anx7 (+/-) mouse brain displayed similar levels of IP3 binding sites and thapsigargin-sensitive (45)Ca(2+) uptake as that seen in wild-type mouse brain, the Anx7 (+/-) mouse brain Ca(2+) pools showed markedly reduced sensitivity to IP3. A potent and saturable Ca(2+)-releasing effect of recombinant ANX7 protein was demonstrated in mouse and rat brain membrane preparations, which was additive with that of IP3. We propose that ANX7 mobilizes Ca(2+) from an endoplasmic reticulum-like pool, which can be recruited to enhance IP3-mediated Ca(2+) release.  相似文献   

3.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

4.
BACKGROUND: The objective was to compare signal transduction pathways exploited by glucose and cell swelling in stimulating insulin secretion. METHODS: Isolated rat (Wistar) pancreatic islets were stimulated in vitro by 20 mmol/l glucose or 30% hypotonic medium (202 mOsm/kg) in various experimental conditions. RESULTS: Glucose did not stimulate insulin release in calcium free medium. Cell swelling-induced insulin release in calcium free medium, even in the presence of the membrane permeable calcium chelator BAPTA/AM (10 micromol/l). Protein kinase C (PKC) inhibitor bisindolylmaleimide VIII (1 micromol/l) abolished the stimulation of insulin secretion by glucose but did not affect the swelling-induced insulin release. PKC activator phorbol 12-13-dibutyrate (1 micromol/l) stimulated insulin secretion in medium containing Ca2+ and did not potentiate insulin secretion stimulated by hypotonic extracellular fluid. Dilution of the medium (10-30%) had an additive effect on the glucose-induced insulin secretion. Noradrenaline (1 micromol/l) abolished glucose-induced insulin secretion but did not inhibit hypotonic stimulation either in presence or absence of Ca2+. CONCLUSION: Glucose- and swelling-induce insulin secretion through separate signal transduction pathways. Hyposmotic stimulation is independent from both the extracellular and intracellular Ca2+, does not involve PKC activation, and could not be inhibited by noradrenaline. These data indicate a novel signaling pathway for stimulation of insulin secretion exploited by cell swelling.  相似文献   

5.
Monensin, a univalent ionophore, is a carboxylic acid produced by Streptomyces cinnamonensis. It will complex various alkali-metal ions, but most readily binds Na+. Because of interest in the possible role of Na+ in the regulation of insulin secretion, we examined its effects on several aspects of the metabolism of isolated rat islets of Langerhans. The ionophore inhibited glucose-stimulated insulin release in a concentration-dependent manner, completely inhibiting secretion evoked by 20 mM-glucose at concentrations as low as 0.1 microM in static incubations. In perifusion experiments, both phases of insulin release were equally affected. Monensin (0.1 microM) had no significant effect on glucose oxidation as measured by the generation of 14CO2 from [14C]glucose. Monensin increased the rate of 22Na+ efflux from preloaded islets and net 22Na+ uptake over 30 min, in the absence of changes in islet volume or extracellular space. The ionophore increased the Rb+/K+ permeability of islet cells, as shown by its inhibition of 86Rb+ retention and stimulation of 86Rb+ efflux. At 0.1 microM, monensin abolished glucose-stimulated 45Ca2+ uptake by islets during 5 min incubations, and stimulated 45Ca2+ efflux from preloaded islets perifused with Ca2+-free medium, even in the complete absence of extracellular Na+. Studies of the uptake of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione showed that 0.1 microM-monensin increased net intracellular pH from 7.05 to 7.13. 7 Monensin has widespread, complex, effects on the secretory responses and ion handling by the B cells, which are difficult to interpret in terms solely of actions as a Na+ ionophore.  相似文献   

6.
Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.  相似文献   

7.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

8.
Insulin release from isolated perifused pancreatic islets was stimulated by the divalent ionophore A23187 in the absence of exogenous glucose. In addition, A23187 produced a 2-fold elevation of cyclic adenosine 3':5'-monophosphate (cAMP) levels in isolated perifused islets. The elevation of cAMP levels coincided with peak insulin release. Ionophore-induced insulin release was unaffected by pretreatment of the islets with theophylline (5 mM). Stimulation of insulin release produced by the ionophore occurred either in the presence or absence of extracellular Ca-2+; however, cAMP accumulation required the presence of extracellular Ca-2+. The ionophore (10 muM) had no effect on adenylate cyclase activity of homogenates of isolated islets. The results of this study are interpreted as indicating that intracellular Ca-2+ has an essential role in the insulin releasing mechanism, whereas the cAMP system has a modulatory effect on this process.  相似文献   

9.
Insulin secretion from the pancreatic β-cell is controlled by changes in membrane potential and intracellular Ca(2+). The contribution of intracellular Ca(2+) stores to this process is poorly understood. We have previously shown that β-cells of mice lacking one copy of the Annexin 7 gene (Anx7(+/-)) express reduced levels of IP(3) receptors and defects in IP(3)-dependent Ca(2+) signaling. To further elucidate the effect of the Anx7(+/-) mutation on signaling related to intracellular Ca(2+) stores in the β-cell, we measured the effects of Ca(2+) mobilizing agents on electrical activity, intracellular Ca(2+) and insulin secretion in control and mutant β-cells. We found that the muscarinic agonist carbachol and the ryanodine receptor agonists caffeine and 4-chloro-m-cresol had more potent depolarizing effects on Anx7(+/-) β-cells compared to controls. Accordingly, glucose-induced insulin secretion was augmented to a greater extent by caffeine in mutant islets. Surprisingly, ryanodine receptor-mediated Ca(2+) mobilization was not affected by the Anx7(+/-) mutation, suggesting that the mechanism underlying the observed differences in electrical and secretory responsiveness does not involve intracellular Ca(2+) stores. Our results provide evidence that both IP3 receptors and ryanodine receptors play important roles in regulating β-cell membrane potential and insulin secretion, and that the Anx7(+/-) mutation is associated with alterations in the signaling pathways related to these receptors.  相似文献   

10.
Ca2+-dependent processes are activated by Ba2+ in a variety of biological systems. When Ca2+ was replaced by equimolar amounts of Ba2+ there was a marked increase in insulin secretion from beta-cell-rich pancreatic islets microdissected from ob/ob-mice. At both 3 and 20 mM glucose Ba2+ stimulated insulin release in a concentration-dependent manner, being less stimulatory at high concentrations. The stimulatory effect of Ba2+ on insulin release is similar to that of Ca2+ in being more pronounced and reached at lower concentrations when the beta-cells were sensitized by cyclic AMP. However, both glucose oxidation and utilization were suppressed when Ca2+ was replaced by equimolar amounts of Ba2+. Ba2+-stimulated insulin release resembled physiological secretion initiated by Ca2+ in being inhibited by L-epinephrine, pentobarbital and a low oxygen tension.  相似文献   

11.
La3+ was used to study the involvement of Ca2+ in insulin secretion in beta-cell-rich pancreatic islets micro-dissected from non-inbred ob/ob mice. Ultrastructural studies revealed that the localization of La3+ was entirely restricted to the exterior of the cells. Consistent with a membrane action, exposure to La3+ failed to affect glucose oxidation and either the sucrose space or the general ultrastructure of the islets. In contrast, La3+ had marked effects on insulin release and 45Ca fluxes. Exposure to La3+ resulted in pronounced inhibition of insulin release irrespective of the presence or absence of Ca2+, 3-isobutyl-1-methylxanthine or glucose. Perifusion experiments revealed that the inhibitory action was prompt, sustained and readily reversible. Removal of La3+ was associated with a subsequent prolonged stimulatory phase of insulin release even in medium deficient in Ca2+. This action could not be attributed to an increase in cyclic AMP, but was potentiated by 3-isobutyl-1-methylxanthine and abolished by L-adrenaline. La3+ displaced 45Ca from superficially located binding sites and inhibited the uptake and efflux of 45Ca. The stimulatory and inhibitory actions of glucose on 45Ca efflux were also abolished in the presence of 2 mM-La3+ Removal of La3+ was associated with the preferential mobilization of 45Ca incorporated in response to glucose. The results indicate that binding of La3+ to superficial sites in the plasma membrane leads to inhibition of insulin release by suppression of transmembrane Ca2+ fluxes. It is suggested that accumulation of Ca2+ in the cytoplasm accounts for the stimulation of insulin release seen after removal of La3+ from inhibitory binding sites in the beta-cell plasma membrane.  相似文献   

12.
The increased insulin release induced by carbamoylcholine (CbCh) in pancreatic islets requires the presence of extracellular Ca2+. Intracellular recordings demonstrate that CbCh produces a transient increase in Ca2+ channel activity lasting from 30 to 60 s. Thereafter activity decreased to levels lower than in controls. When extracellular Ca2+ was present during this initial period, the stimulatory effects of CbCh were not different from those in which Ca2+ was present throughout. These experiments suggest that during muscarinic potentiation of insulin release extracellular calcium is only needed in the first minute.  相似文献   

13.
The glucose effect on insulin release in a Ca(2+)-deficient medium was analyzed in perifusion experiments with aggregates of cells prepared by dispersal of the beta-cell-rich pancreatic islets of ob/ob-mice. Hyperosmolar additions of 20 mM D-glucose or its poorly metabolized transport analogue 3-0-methyl-D-glucose resulted in 50% suppression of the secretory rate. However, after isosmolar additions of the sugars, replacing non-penetrating sucrose, there was a stimulation of insulin release. Whereas D-glucose was less effective than 3-O-methyl-D-glucose in stimulating insulin release after isosmolar addition, the opposite was found for the enhanced secretory response obtained when the sugars were excluded from the perifusion medium. The studies indicate that D-glucose has regulatory actions on insulin release also in the virtual absence of extracellular Ca2+. This effect is not only due to osmolar influences but involves also direct suppression of the secretory activity probably mediated by the metabolism of the sugar.  相似文献   

14.
The role of Ca2+ in the secretion of insulin and glucagon was investigated by studying the effects of Ca2+ ionophores on hormone secretion from isolated perifused islets of Langerhans. Ionophore X537A (100 muM), which binds alkaline earth cations and also complexes some univalent cations, caused a rapid transient increase in insulin and glucagon secretion which was not dependent on the presence of Ca2+ in the perifusion medium. Ionophore A23187 (100 muM), which specifically binds bivalent cations at neutral pH values, similarly increased insulin secretion in complete and Ca2+-free medium, but only stimulated glucagon release in the presence of extracellular Ca2+. Since the stimulatory effects of both ionophores were associated with an increased Ca2+ flux in the islets, these experiments support the hypothesis that Ca2+ may trigger the release of insulin and suggest that it is also involved in the secretion of glucagon. The basal rate of both insulin and glucagon release was significantly increased when Ca2+ was omitted from the perifusion medium, but it is proposed that this finding may be due to adverse effects on cell-membrane function under these conditions.  相似文献   

15.
This study investigated the effect of extracellular annexin I on regulating insulin secretion in MIN6N8a (an insulin secreting cell line) cells. The properties of annexin I receptor in MIN6N8a cells were also determined. Annexin I stimulated insulin release in MIN6N8a cells, regardless of the presence or absence of extracellular Ca(2+). Confocal microscopy revealed that annexin I bound to the surface of MIN6N8a cells. In addition, FACs analysis showed that annexin I bound to the surface of MIN6N8a cells in a dose-dependent manner. However, the annexin I-stimulated insulin secretion and the annexin I binding were abolished in MIN6N8a cells treated with proteases. Annexin I receptors were regenerated time-dependently. Furthermore, annexin I-stimulated insulin secretion was inhibited by cycloheximide but not by actinomycin D. These results showed that annexin I binds to the surface receptor in order to regulate the stimulation of insulin release in MIN6N8a cells.  相似文献   

16.
Both Ca2+ and cyclic AMP (cAMP) are implicated in the regulation of insulin release in the pancreatic beta cell. In hamster insulinoma cells used in our laboratory to study the mechanism of insulin release, Ca2+ and cAMP trigger secretion independently. Concomitant with stimulation of the secretory apparatus both cAMP and Ca2+ promote phosphorylation of distinct insulinoma cell proteins. Calmodulin may be involved in the stimulation of insulin release and protein phosphorylation induced by Ca2+ influx. The Ca2+-dependent protein kinase of the insulinoma cell is activated by exogenous calmodulin and blocked by trifluoperazine, and inhibitor of calmodulin action. This drug also inhibits glucose-induced insulin release in pancreatic islets. In insulinoma cells trifluoperazine blocks Ca2+ influx-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated secretion. Inhibition of Ca2+ influx-mediated insulin release and protein phosphorylation occurs with nearly identical dose dependence. Inasmuch as trifluoperazine affects voltage-dependent Ca2+ uptake in insulinoma cells, an involvement of calmodulin cannot be directly inferred. The evidence suggests that protein phosphorylation may be involved in the activation of the secretory apparatus by both cAMP and Ca2+. It is proposed that stimulation of insulin release by cAMP and Ca2+ is mediated by cAMP-dependent protein kinase and calmodulin-dependent protein kinase, respectively.  相似文献   

17.
Protein phosphorylation in permeabilized pancreatic islet cells.   总被引:4,自引:4,他引:0       下载免费PDF全文
A system of digitonin-permeabilized islet cells was developed to characterize Ca2+- and calmodulin-dependent protein phosphorylation further and to determine whether activation of this membrane-bound process was sufficient for initiation of Ca2+-stimulated insulin secretion. The efficacy of digitonin in permeabilizing the plasma membrane was assessed by Trypan Blue exclusion, by extracellular leakage of lactate dehydrogenase, and by permeability to [gamma-32P]ATP. This treatment did not detectably alter the ultrastructure of the permeabilized cells. Digitonin was equally effective when presented to islet cells that had been previously dispersed or directly to intact isolated islets. The Ca2+- and calmodulin-dependent phosphorylation of endogenous membrane-bound substrates could be demonstrated in the permeabilized cells incubated with [gamma-32P]ATP. This activity displayed characteristics that were similar to those described for the protein kinase measured in subcellular fractions and was dependent on addition of exogenous calmodulin, indicating that calmodulin had been removed from the kinase by permeabilization of the cells. Ca2+-dependent insulin release by the digitonin-permeabilized islet was demonstrated, with half-maximal release occurring at 0.1 microM-free Ca2+ and maximal secretion at 0.2 microM-free Ca2+. Under these conditions, calmodulin did not further enhance insulin release, although a stimulatory effect of calmodulin was observed in the absence of free Ca2+. These studies indicate that the permeabilized-islet model will be useful in dissecting out the factors involved in Ca2+-activated insulin secretion.  相似文献   

18.
To determine whether lysophospholipids mobilize cellular Ca2+, intact rat islets were prelabelled with 45Ca2+ and subjected to three maneuvers designed to simulate the physiologic accumulation of lysophospholipids: (1) exogenous provision; (2) addition of porcine pancreatic phospholipase A2; and (3) provision of p-hydroxymercuribenzoic acid, which impedes both the reacylation and hydrolysis of endogenous lysophospholipids, leading to their accumulation in islets. Each maneuver provoked 45Ca2+ efflux at concentrations nearly identical to those previously reported to induce insulin release in the absence of toxic effects on the islets. Lysophosphatidylcholine (lysoPC) and lysophosphatidylinositol were active, whereas the ethanolamine and serine derivatives, and lysophosphatidic acid, were much less effective. The effects of lysoPC were reversible; they also were reduced by lanthanum or gentamicin (which are probes of superficial, plasma membrane-bound stores of Ca2+) or by prior depletion of membrane-bound cellular Ca2+ stores using ionomycin, but not by removal of extracellular Ca2+ or Na+. The effects of lysoPC, phospholipase A2 and p-hydroxymercuribenzoic acid were largely independent of any hydrolysis to, or accumulation of, free fatty acids as assessed by resistance to dantrolene or trifluoperazine (which selectively reduce arachidonic acid-induced 45Ca2+ efflux and insulin release). Thus, lysophospholipids are a newly recognized class of lipid mediators which may promote insulin release at least in part via mobilization of a pool(s) of Ca2+ ('trigger Ca2+') bound in the plasma membrane and possibly in other cellular membranes.  相似文献   

19.
D-glucose stimulates insulin release from islets exposed to both diazoxide, to activate ATP-responsive K+ channels, and a high concentration of K+, to cause depolarization of the B-cell plasma membrane. Under these conditions, the insulinotropic action of D-glucose is claimed to occur despite unaltered cytosolic Ca2+ concentration, but no information is so far available on the changes in Ca2+ fluxes possibly caused by the hexose. In the present experiments, we investigated the effect of D-glucose upon 45Ca efflux from islets exposed to both diazoxide and high K+ concentrations. In the presence of diazoxide and at normal extracellular Ca2+ concentration, D-glucose (16.7 mmol/l) inhibited insulin release at 5 mmol/l K+, but stimulated insulin release of 90 mmol/l K+. In both cases, the hexose inhibited 45Ca outflow. In the presence of diazoxide, but absence of Ca2+, D-glucose (8.3 to 25.0 mmol/l) first caused a rapid decrease in insulin output followed by a progressive increase in secretory rate. This phenomenon was observed both at 5 mmol/l or higher concentrations (30, 60 and 90 mmol/l) of extracellular K+. It coincided with a monophasic decrease in 45Ca efflux and either a transient (at 5 mmol/l K+) or sustained (at 90 mmol/l K+) decrease in overall cytosolic Ca2+ concentration. The decrease in 45Ca efflux could be due to inhibition of Na(+)-Ca2+ countertransport with resulting localized Ca2+ accumulation in the cell web of insulin-producing cells. A comparable process may be involved in the secretory response to D-glucose in islets exposed to diazoxide and a high concentration of K+ in the presence of extracellular Ca2+.  相似文献   

20.
T Tamagawa  H Niki  A Niki 《FEBS letters》1985,183(2):430-432
The role of cytosolic free Ca2+ in insulin release was evaluated using isolated rat pancreatic islets permeabilized with digitonin and incubated in Ca-EGTA buffers to fix free Ca2+ concentration at arbitrary levels. Ca2+ induced insulin release in a concentration-dependent manner with the threshold being between 0.1 and 1 microM. The hormone release was increased by forskolin and 12-O-tetradecanoyl phorbol-13-acetate (TPA), a potent activator of adenylate cyclase and that of protein kinase C, respectively. The findings suggest that activation of both protein kinase A and protein kinase C modulate insulin release without a concomitant increase in cytosolic free Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号