首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
环境介质中的抗生素及其微生物生态效应   总被引:13,自引:0,他引:13  
俞慎  王敏  洪有为 《生态学报》2011,31(15):4437-4446
环境介质中的抗生素因存在浓度较低被称为微量污染物,其对生态系统和人类健康的影响已逐步得到认知。长期以来,抗生素被用于人和畜禽细菌性感染疾病的治疗。然而,随着集约化养殖业的发展,抗生素被大量添加于饲料中来预防畜禽和鱼虾的养殖疾病。因此,环境介质中抗生素种类和含量随着畜禽和水产养殖业的快速发展逐年增加。本文综述了环境中抗生素的来源、残留浓度及其环境微生物生态学效应。医用、兽用抗生素和人畜粪便的农用是抗生素进入环境的主要来源,其在不同环境介质中残留浓度不一:地表水含量为μg?L-1,土壤含量为?g?kg-1,沉积物含量为μg?kg-1—mg?kg-1之间。抗生素进入土壤、水和沉积物等环境介质,经吸附-解吸、迁移和降解等过程重新分配,其降解方式主要有水解、光解和生物降解。抗生素影响环境介质中微生物的生物量、活性和群落结构,并诱导产生抗性基因,但对生态系统服务及其功能的干扰和影响尚有待进一步研究。  相似文献   

2.
农药污染对生物的危害   总被引:2,自引:0,他引:2  
在农业生产中,农药虽然杀死了许多对农作物有害的昆虫等,为农业生产做出了贡献,但是,也产生了一些长期的、潜在性的生态影响,直接影响着生物的正常生长与发育过程。1 农药对环境的污染直接危害着生物的正常生长1.1 对大气的污染 大气中的农药污染来源于农业对病虫害的防治,其中以飞机喷洒农药危害最大。因为农药可被空气中的微小灰尘吸附而漂浮在空气中。人及动物在呼吸过程中就会把这些被农药污染的空气吸入身体,从而导致各种疾病。另外,在植物的整个生长过程中,其光合作用、呼吸作用等也离不开空气的参与,被污染了的空气…  相似文献   

3.
养殖动物及其相关环境耐药组的研究进展   总被引:1,自引:0,他引:1  
畜牧养殖业中大量抗生素的使用,导致养殖动物及其相关环境中存在大量的耐药基因/耐药细菌。这些耐药基因可以借助基因水平转移等方式在环境中进一步扩散,甚至进入食品动物随食物链传播,对生态环境、食品安全和人类健康造成极大的威胁。随着基因组学研究手段的不断进步,养殖动物及其相关环境中耐药基因的多样性和生态学分布规律被广泛揭示。文中综述了相关领域耐药基因的研究进展,探讨了其对人体健康的潜在影响,并对未来的研究方向进行了展望。  相似文献   

4.
自抗生素被发现和使用以来,其在人类和动物疾病预防与治疗、提高动物生产等方面均发挥了重要作用。但抗生素的批量生产及大量应用,特别是在养殖业和临床医疗上的滥用,导致抗生素抗性基因(ARGs)在环境中普遍存在,其借助质粒、转座子、整合子等可移动元件通过接合、转座、转化等方式在环境中广泛传播,导致微生物药性不断增强,对人类健康和生态安全造成严重威胁。当前,ARGs对人类健康的影响已受到高度关注,但有关ARGs在环境中的生态风险研究还相对薄弱。本文综述了ARGs污染的现状及其生态风险,并对该领域中未来研究重点进行了展望,以期为今后抗性基因的研究和生态防控提供参考。  相似文献   

5.
宏基因组学在微生物抗生素抗性基因检测中的应用   总被引:2,自引:0,他引:2  
抗生素广泛应用于人类和动物疾病的治疗等过程中。不合理利用和滥用抗生素导致耐药细菌、抗性基因的产生和传播。宏基因组学能够分析不同环境中抗生素抗性基因的多样性,并且完善目前已有的或构建新的宏基因组文库,从而为将来进行基因比对提供有力的参考。本文将综述宏基因组学在人类、动物和环境中微生物抗生素抗性基因检测的应用,以期为未来评估抗性基因风险和解决抗生素耐药性问题提供技术支持。  相似文献   

6.
随着生活水平的不断提高,人们对水产品的需求量日益增加,水产养殖业得到飞速发展。然而,各种寄生虫、细菌和病毒诱发的疾病给水产养殖业造成了巨大的经济损失,严重制约了水产养殖业的快速稳定发展。作为传统的防治手段,抗生素等化学合成药物常用于水产养殖过程。大量化学合成药物的滥用诱发了药物残留、耐药菌等环境污染问题,危害人类健康。因此,具有多种有效活性成分的中草药因其天然、安全、副作用小等原因,成为探索新型防控水产病害暴发手段的研究对象。当前,中草药常被用于调节水产动物的免疫力、生长速度和预防疾病暴发等。同时,中草药还可用于改善养殖环境,降低环境因子对水产动物的胁迫。然而,目前的研究主要集中在从中草药中获取防控疾病暴发的复合有效成分,存在药效不稳定、活性成分不明确等问题,无法满足生产高效、廉价、稳定防治剂的需求。论述了当前中草药在防控水产动物疾病暴发中的应用及其作用机制,揭示了对中草药活性分子作用机制研究的不足,强调了中草药作为一种更环保、更有效的水产养殖疾病防控手段进行应用的潜力,对其抗病机制的深入研究尤为重要。  相似文献   

7.
抗生素耐药基因作为一种新型的环境污染物已引起研究者的高度关注。畜禽养殖业长期将抗生素添加到饲料中,在促进动物生长、预防和治疗动物疾病等方面起了重要作用。这些抗生素大多数不能被动物完全吸收,在动物肠道中诱导出耐抗生素细菌和抗生素耐药基因,并随着粪便排出体外。畜禽粪便作为重要的抗生素、耐抗生素细菌和抗生素耐药基因储存库,通过堆粪、施肥等农业活动进入土壤环境中,可刺激土壤中耐抗生素细菌和抗生素耐药基因的富集。耐药基因借助于基因水平转移等方式在土壤介质中进一步传播扩散,甚至进入植物中随食物链传播,对生态环境和人类健康造成极大的威胁。为了正确评估抗生素耐药基因的生态风险,本文结合国内外相关研究,系统阐述了畜禽粪便-土壤系统中抗生素耐药基因的来源、分布及扩散机制,同时探讨了细菌耐药性的主要研究方法,指出堆肥化处理仍是目前去除抗生素耐药基因的主要手段,并对今后的研究方向进行展望。  相似文献   

8.
抗性基因在环境中的垂直及水平传播,致使抗生素耐药性成为危及人类和动物生命健康的全球性问题。动物源食品是中国美食不可或缺之物,而由于抗生素超用与滥用等行为让公众不得不关注动物源食品源头——养殖场的抗生素抗性基因环境安全问题。本文综述了养殖环境中抗生素抗性基因的研究进展,分析了养殖环境中抗生素抗性基因产生原因、传播途径以及影响因素,介绍了现有风险评估方法和控制技术,并对今后养殖环境中抗生素抗性基因的控制策略、技术及研究方向提出了建议。  相似文献   

9.
四环素在土壤和水环境中的分布及其生态毒性与降解   总被引:3,自引:0,他引:3  
詹杰  魏树和 《生态学报》2015,35(9):2819-2825
四环素是新兴污染物PPCPs中的一种,因其在畜禽及水产养殖中的大量使用在环境中造成一定的残留,成为一个较突出的环境风险问题。概述了环境中四环素的来源,对微生物、动物及植物的生态毒性,在土壤及水体中的残留及降解等环境行为。认为,环境中四环素的含量既使在很高的情况下,其对动物和植物的直接毒害作用也是有限的,四环素在环境中长期残留产生的抗性基因问题,可能是一个重要的研究方向。  相似文献   

10.
1株新分离的人两歧双歧杆菌耐药性研究   总被引:3,自引:0,他引:3  
目的研究新分离的人两歧双歧杆菌对11种抗生素的耐药性。方法采用琼脂扩散纸片法测定人两歧双歧杆菌对11种抗生索的敏感性,通过在双歧杆菌培养基中添加不同浓度的抗生素来确定MIC值。结果该菌株对β-内酰胺类、大环内脂类和利福平非常敏感.对氨基糖苷类、黄胺类表现出较强抗性。结论该菌株对11种抗生索的药物敏感性与国内外其他文献所报道的结果一致。但该菌株带有一22kb大小的天然质粒。需进一步研究质粒与其耐药性的关系。  相似文献   

11.
Twelve derivatives of Escherichia coli strain HB101 which contained different sizes of plasmids ranging from 3.9 Kb to 48 Kb and encoding resistance to various antibiotics were used. When these organisms were introduced into natural river water, the population declined rapidly and by day 3, the majority (i.e. more than 99.9%) of them could no longer be detected on antibiotic-amended culture plates. If the river water was filter sterilized first, the added organisms maintained their population for up to 7 d without any significant decrease in numbers. Similar results were also observed in sterilized tap water or distilled water. This indicated that the disappearance of these organisms in the aquatic environment was caused mainly by biotic factor(s). The loss of the ability to grow in the presence of antibiotics by some of the E. coli was not observed unless they were allowed to grow in the antibiotic-free environment first. When the test organisms were added to natural silt loam, a large portion of the original population still remained viable after 16 d. There was no relationship between the percentage survival of E. coli in natural river water and the sizes of plasmid harboured. On the other hand, when these bacteria were added to natural soil, survival appeared to increase as plasmid size increased. and accepted 19 August 1989  相似文献   

12.
Twelve derivatives of Escherichia coli strain HB101 which contained different sizes of plasmids ranging from 3.9 Kb to 48 Kb and encoding resistance to various antibiotics were used. When these organisms were introduced into natural river water, the population declined rapidly and by day 3, the majority (i.e. more than 99.9%) of them could no longer be detected on antibiotic-amended culture plates. If the river water was filter sterilized first, the added organisms maintained their population for up to 7 d without any significant decrease in numbers. Similar results were also observed in sterilized tap water or distilled water. This indicated that the disappearance of these organisms in the aquatic environment was caused mainly by biotic factor(s). The loss of the ability to grow in the presence of antibiotics by some of the E. coli was not observed unless they were allowed to grow in the antibiotic-free environment first. When the test organisms were added to natural silt loam, a large portion of the original population still remained viable after 16 d. There was no relationship between the percentage survival of E. coli in natural river water and the sizes of plasmid harboured. On the other hand, when these bacteria were added to natural soil, survival appeared to increase as plasmid size increased.  相似文献   

13.
The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic. Antibiotics, however, are not a human invention as most of them are either natural products produced by soil microorganisms or semisynthetic derivatives of natural products. Because we use antibiotics to inhibit the bacterial growth, it is generally assumed that growth inhibition is also their primary ecological function in the environment. Nevertheless, multiple studies point to diverse nonlethal effects that are exhibited at lower levels of antibiotics. Here we review accumulating evidence of antibiosis and of alternative functions of antibiotics exhibited at subinhibitory concentrations. We also speculate on how these effects might alter phenotypes, fitness, and community composition of microbes in the context of the environment and suggest directions for future research.  相似文献   

14.
Veterinary antibiotics in the aquatic and terrestrial environment   总被引:1,自引:0,他引:1  
The fate of antibiotics in the environment, and especially antibiotics used in animal husbandry, is subject to recent studies and the issue of this review. The assumed quantity of antibiotics excreted by animal husbandry adds up to thousands of tonnes per year. Administered medicines, their metabolites or degradation products reach the terrestrial and aquatic environment by the application of manure or slurry to areas used agriculturally, or by pasture-reared animals excreting directly on the land, followed by surface run-off, driftage or leaching in deeper layers of the earth. The scientific interest in antimicrobially active compounds in manure and soil, but also in surface and ground water, has increased during the last decade. On the one side, scientific interest has focused on the behaviour of antibiotics and their fate in the environment, on the other hand, their impact on environmental and other bacteria has become an issue of research. Analytical methods have now been developed appropriately and studies using these new techniques provide accurate data on concentrations of antimicrobial compounds and their residues in different organic matters. Some antibiotics seem to persist a long time in the environment, especially in soil, while others degrade very fast. Not only the fate of these pharmaceuticals but their origin as well is an object of scientific interest. Besides human input via wastewater and other effluents, livestock production has been recognised as a source of contamination. One main concern with regard to the excessive use of antibiotics in livestock production is the potential promotion of resistance and the resulting disadvantages in the therapeutic use of antimicrobials. Since the beginning of antibiotic therapy, more and more resistant bacterial strains have been isolated from environmental sources showing one or multiple resistance. There have been several attempts to use antibiotic resistance patterns in different bacteria as indicators for various sources of faecal pollution. This review gives an overview of the available data on the present use of veterinary antibiotics in agriculture, on the occurrence of antibiotic compounds and resistant bacteria in soil and water and demonstrates the need for further studies.  相似文献   

15.
抗生素的广泛使用导致其在环境中普遍存在,所引发的抗性基因问题已对全球公共卫生构成重大威胁。土壤是环境中抗生素的重要汇,抗生素暴露会对土壤生物带来危害,甚至会间接对人体健康造成潜在风险,因此需采取有效手段修复抗生素污染的土壤。文中综述了抗生素对土壤植物表型生长指标、土壤动物生理特征及群落分布、微生物群落组成与功能的影响,以及抗生素抗性基因在土壤生物间的传播风险等;总结了利用耐受土壤植物、动物、微生物以及其互作关系修复抗生素污染土壤的潜力与前景,指出了已有土壤中抗生素环境风险和生物修复研究中尚存在的问题,展望了未来的研究方向。  相似文献   

16.
环境抗生素污染的微生物修复进展   总被引:2,自引:0,他引:2  
近年来随着抗生素在畜牧业、水产养殖业以及医疗行业的广泛应用,大量抗生素通过排泄物进入环境,导致我国大面积水体及土壤环境中抗生素残留量急剧增高。环境中不同种类的抗生素的残留导致微生物种群结构失衡,对生态环境及人类造成极大危害。因此,解决抗生素残留问题是21世纪新型环境污染物领域的一个重要课题。已有研究显示,一些微生物能够以抗生素为碳源生存,可用于降解环境中残留抗生素,但人们对微生物降解抗生素的降解机制了解较少。文中概括了近十年来抗生素降解菌株和菌群对抗生素的去除情况,以及应用微生物菌群处理抗生素残留的技术方法,同时对未来利用微生物修复法减少环境中抗生素残留进行了展望。  相似文献   

17.
BACKGROUND: Low-dose and long-term administration of macrolide antibiotics into patients with chronic airway inflammatory diseases could favorably modify their clinical conditions. However, the therapeutic mode of action of macrolides is not well understood. Free oxygen radicals, including nitric oxide (NO), are well recognized as the important final effector molecules in the development and the maintenance of inflammatory diseases. PURPOSE: The influence of macrolide antibiotics on NO generation was examined in vivo. METHODS: Male ICR mice, 5 weeks of age, were orally administered with either roxithromycin, clarithromycin, azithromycin or josamycin once a day for 2-4 weeks. The mice were then injected intraperitoneally with 5.0 mg/kg lipopolysaccharide (LPS) and the plasma NO level was examined 6 h later. RESULTS: Although pre-treatment of mice with macrolide antibiotics for 2 weeks scarcely affected NO generation by LPS injection, the administration of macrolide antibiotics, except for josamycin, for 4 weeks significantly inhibited LPS-induced NO generation. The data in the present study also showed that pre-treatment of mice with macrolide antibiotics for 4 weeks significantly suppresses not only production of pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, but also inducible nitric oxide synthase mRNA expressions, which are enhanced by LPS injection. CONCLUSION: These results strongly suggest that suppressive activity of macrolide antibiotics on NO generation in response to LPS stimulation in vivo may, in part, account for the clinical efficacy of macrolides on chronic inflammatory diseases.  相似文献   

18.
Effect of antibiotics in the environment on microbial populations   总被引:1,自引:0,他引:1  
Antibiotics act as an ecological factor in the environment that could potentially affect microbial communities. The effects include phylogenetic structure alteration, resistance expansion, and ecological function disturbance in the micro-ecosystem. Numerous studies have detected changes of microbial community structure upon addition of antibiotics in soil and water environment. However, the causal relationship between antibiotic input and resistance expansion is still under debate, with evidence either supporting or declining the contribution of antibiotics on alteration of antibiotic resistance. Effects of antibiotics on ecological functions have also been discovered, including nitrogen transformation, methanogenesis, and sulfate reduction. In the latter part, this review discusses in detail on factors that influence antibiotic effects on microbial communities in soil and aquatic environment, including concentration of antibiotics, exposure time, added substrates, as well as combined effects of multiple antibiotics. In all, recent research progress offer an outline of effects of antibiotics in the natural environment. However, questions raised in this review need further investigation in order to provide a comprehensive risk assessment on the consequence of anthropogenic antibiotic input.  相似文献   

19.
Antibiotic-resistant bacteria (ARB) have gained increased notoriety due to their continued detection in environmental media and consequently their threat to human and animal health. The continuing spread of antibiotic resistance throughout the environment is of growing environmental and public health concern, making it difficult to treat harmful resistant diseases. This paper examines the presence of antibiotics, ARB, and antibiotic-resistant genes (ARGs) in aquatic environments; the effectiveness of current water treatment strategies to remove them; and risk assessment methods available that can be used to evaluate the risk from antibiotic resistance. Antibiotics, ARB, and ARGs have been reported at varying levels in wastewater treatment plants, hospital wastewater, irrigation water, recreational water, and drinking water. There are many different water treatments capable of reducing antibiotic resistance (including chlorination, UV, and ozone); however, no one method can fully eliminate it with much variation in the reported effects. Risk assessment models can be used for interpreting field data into the risk to human health from antibiotic resistance. Currently, there is no gold standard risk assessment method for evaluating antibiotic resistance. Methods in this area need further development to reflect evolving risk assessment methodologies and dynamic data as it emerges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号