首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):306-310
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[3H3C]methionine, l-[14CH3]methionine, or [1,2-14C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

2.
Synthesis of the phytoalexin pisatin by a methyltransferase from pea   总被引:3,自引:1,他引:2  
Previous labeling studies in vivo suggest that the terminal step of (+)pisatin biosynthesis in Pisum sativum L. is methylation of the phenol (+)6a-hydroxymaackiain (HMK). We have found that extracts from pea seedlings perform this reaction, using S-adenosylmethionine as the methyl donor. The enzyme activity was induced by microbial infection or treatment with CuCl2, which elicit pisatin synthesis, though some activity was also present in healthy tissues. It has been reported that CuCl2-treated pea tissue provided with (−)HMK or (−)maackiain can synthesize (−)pisatin. Our extract showed no methyltransferase activity dependent on either of these substrates. Methylation of (+)maackiain was detectable, but much slower than that of (+)HMK.  相似文献   

3.
L-929 cell surface membranes were incubated with S-adenosyl-l-[methyl-3H]-methionine and found to contain phosphatidylethanolamine: S-adenosylmethionine N-methyltransferase (phosphatidylethanolamine N-methyltransferase) activity. The enzyme or combination of enzymes responsible for this activity methylated endogenous phosphatidylethanolamine and its methylated derivatives to yield phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidylcholine. Maximum enzyme activity was expressed at pH 6.9, the reaction was not dependent on the presence of divalent cations, and exogenously added phospholipids did not stimulate the rate of reaction. Phospholipid methylation was inhibited by S-adenosyl-l-homocysteine and by local anaesthetic drugs such as chlorpromazine and tetracaine which partition into the lipid bilayer. Control experiments demonstrated that the surface membrane-associated methyltransferase activity was not due to contamination of surface membrane preparations with intracellular membranes. Surface membranes were found to have higher specific methyltransferase activities than whole L-cell homogenates or endoplasmic reticulum-enriched microsomes. The low rate of methyltransferase function expressed in vitro (approximately 1 pmol/min · mg protein) suggests that phospholipid methylation is not a major metabolic source of surface membrane phosphatidylcholine.  相似文献   

4.
The P1 restriction endonuclease (EcoP1) prepared from a P1 lysogen of Escherichia coli makes one double-strand break in simian virus (SV40) DNA. In the presence of cofactors S-adenosylmethionine and ATP the enzyme cleaves 70% of the closed circular SV40 DNA molecules once to produce unit-length linear molecules and renders the remaining 30% resistant to further cleavage. No molecules were found by electron microscopy or by gel electrophoresis that were cleaved more than once. It would appear that the double-strand break is made by two nearly simultaneous single-strand breaks, since no circular DNA molecules containing one single-strand break were found as intermediates during the cleavage reaction. The EcoP1 endonuclease-cleaved linear SV40 DNA molecules are not cleaved at a unique site, as shown by the generation of about 65% circular molecules after denaturation and renaturation. These EcoP1 endonuclease-cleaved, renatured circular molecules are resistant to further cleavage by EcoP1 endonuclease.The EcoP1 endonuclease cleavage sites on SV40 DNA were mapped relative to the partial denaturation map and to the EcoRI and HpaII restriction endonuclease cleavage sites. These maps suggest there are a minimum of four unique but widely spaced cleavage sites at 0.09, 0.19, 0.52, and 0.66 SV40 units relative to the EcoRI site. The frequency of cleavage at any particular site differs from that at another site. If S-adenosylmethionine is omitted from the enzyme reaction mix, SV40 DNA is cleaved into several fragments.An average of 4.6 ± 1 methyl groups are transferred to SV40 DNA from S-adenosylmethionine during the course of a normal reaction containing the cofactors. Under conditions which optimize this methylation, 7 ± 1 methyl groups can be transferred to DNA. This methylation protects most of the molecules from further cleavage. The methyl groups were mapped relative to the Hemophilus influenzae restriction endonuclease fragments. The A fragment receives three to four methyl groups and the B and G fragments each receive one to two methyl groups. These fragments correspond to those in which cleavage sites are located.  相似文献   

5.
The thiol S-methyltransferase from rat liver has been solubilized and prepared in homogeneous form. The enzyme exists in a monomer of Mr 28,000 although enzyme activity is highly unstable with a half-life of 4 days under the best conditions of storage. The reaction requires S-adenosylmethionine as methyl donor but, as is the case with many enzymes active in detoxification, a large variety of lipophilic compounds can serve as acceptors. Acceptor activity is limited to thiols. The naturally occurring hydrophilic thiols, glutathione and cysteine, act neither as substrates nor as inhibitors. The course of the reaction is biphasic with an initial rapid formation of product that is followed by a slower linear rate. The suggestion is offered that this behavior reflects the slow dissociation of an enzyme-product complex composed of enzyme and S-adenosyl-homocysteine.  相似文献   

6.
7.
Three o-diphenol-O-methyltransferases (OMTs I, II and III) which catalyse the monomethylation of various o-diphenols using S-adenosyl-L-methionine as methyl donor were isolated and purified about 210-, 70-, and 70-fold, respectively, from leaves of Nicotiana tabacum cv Samsun NN. They had slightly different MWs (93 000, 90 000 and 100000 for OMTs 1, 11 and Ill respectively) and slightly different pls (5.21, 4.80 and 4.74). The activities of all three enzymes were very stable when stored at 0° but they had different sensitivities to ultrafiltration and to heat treatment (45°). In none of the enzymes was there any change in reaction rate when Mg2+ ions or EDTA were added. The three enzymes exhibited very high and similar affinities towards the substrate S-adenosylmethionine and the reaction product S-adenosylhomocysteine, but they differed markedly in specificities towards the various o-diphenolic substrates. Relative methylation efficiencies were estimated from the calculation of the V/Km ratios that led to the following decreasing order of best substrates: 5-hydroxyferulic acid > caffeic acid > homo-catechol > esculetin > protocatechuic aldehyde > catechol > hydrocaffeic acid > chlorogenic acid, for OMT I, and: homocatechol > catechol > protocatechuic aldehyde > esculetin ≈ cafreic acid > 5-hydroxyferulic acid, for both OMTsIIandIII. Most of the o-diphenols assayed were methylated exclusively in the meta position, but all three tobacco OMTs showed both para and meta-directing activities with protocatechuic acid, protocatechuic aldehyde and escultin. Since Km values towards the two position of methylation were always found to be identical, we conclude that each enzyme bears only one catalytic site.  相似文献   

8.
A simple method to purify S-adenosylmethionine: protein-carboxyl O-methyltransferase (protein methylase II, EC 2.1.1.24) from calf brain has been developed using affinity chromatography. The product of the reaction, S-adenosyl-l-homocysteine, which is a competitive inhibitor of the enzyme, was covalently linked to Sepharose beads. This gel proved to be an effective binder for protein methylase II at pH 6.2 and allowed for specific removal of the enzyme by the addition of the methyl donor substrate, S-adenosyl-l-methionine to the elution buffer. One step using this affinity chromatography column resulted in 377-fold purification of the enzyme and 71% recovery of the activity. Subsequent Sephadex G-100 chromatography enabled the enzyme to be purified 3000-fold from the calf brain whole homogenate. The purified enzyme showed a number of protein methylase II activity peaks following preparative gel electrophoresis with one major enzyme peak.  相似文献   

9.
Glycine betaine is accumulated in cells living in high salt concentrations to balance the osmotic pressure. Glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) of Ectothiorhodospira halochloris catalyze the threefold methylation of glycine to betaine, with S-adenosylmethionine acting as the methyl group donor. These methyltransferases were expressed in Escherichia coli and purified, and some of their enzymatic properties were characterized. Both enzymes had high substrate specificities and pH optima near the physiological pH. No evidence of cofactors was found. The enzymes showed Michaelis-Menten kinetics for their substrates. The apparent Km and Vmax values were determined for all substrates when the other substrate was present in saturating concentrations. Both enzymes were strongly inhibited by the reaction product S-adenosylhomocysteine. Betaine inhibited the methylation reactions only at high concentrations.  相似文献   

10.
Hemimethylated DNA substrates prepared from cell cultures treated with 5-azacytidine are efficient acceptors of methyl groups from S-adenosylmethionine in the presence of a crude preparation of mouse spleen DNA methyltransferase. Partially purified methyltransferase was also capable of efficiently modifying single-stranded unmethylated DNA. The methylation of single-stranded DNA was less sensitive to inhibition by salt than duplex DNA. The presence of other DNA species in the reaction mix (duplex or single-stranded, methylated or unmethylated) inhibited the modification of the hemimethylated duplex DNA. The enzyme was specific for DNA, since the presence of RNA in reaction mixtures did not inhibit the methylation of DNA. DNA methyltransferase formed a tight-binding complex with hemimethylated duplex DNA containing high levels of 5-azacytosine, and this complex was not dissociated by high concentrations of salt. Treatment of cultured cells with biologically effective concentrations of 5-azacytidine and other cytidine analogs modified in the 5 position resulted in a loss of extractable active enzyme from the cells. The amount of extractable active enzyme recovered slowly with time after treatment. These results suggest that incorporation of 5-azacytidine into DNA inhibits the progress of DNA methyltransferase along the duplex, perhaps by the formation of a tight-binding complex. This complex formation might be irreversible, so that new enzyme synthesis might be required to reverse the block of DNA methylation.  相似文献   

11.
Methylation is a major biological process. It has been shown to be important in formation of compounds such as phosphatidylcholine, creatine, and many others and also participates in epigenetic effects through methylation of histones and DNA. The donor of methyl groups for almost all cellular methylation reactions is S-adenosylmethionine. It seems that the level of S-adenosylmethionine must be regulated in response to developmental stages and metabolic changes, and the enzyme glycine N-methyltransferase has been shown to play a major role in such regulation in mammals. This minireview will focus on the latest discoveries in the elucidation of the mechanism of that regulation.  相似文献   

12.
Homocysteine-dependent transmethylases utilizing 5-methyltetrahydropteroylglutamic acid and S-adenosylmethionine as methyl donors have been examined using ammonium sulphate fractions prepared from isolated mitochondria of pea cotyledons. Substantial levels of a 5-rnethyltetrahydropteroylglutamate transmethylase were detected, the catalytic properties of this enzyme being found similar to those of a previously reported enzyme present in cotyledon extracts. The mitochondrial 5-CH3-H4PteGlu transmethylase had an apparent Km of 25 μM for the methyl donor, was saturated with homocysteine at 1 mM and was inhibited 50% by l-methionine at 2.5 mM. At similar concentrations of methyl donor the mitochondrial S-adenosylmethionine methyltransferase was not saturated. Mitochondrial preparations were found capable of synthesizing substantial amounts of S-adenosylmethionine but lacked ability to form S-methylmethionine. Significant levels of β-cystathionase, cystathionine-γ-synthase, l-homoserine transacetylase and l-homoserine transsuccinylase were detected in the isolated mitochondria. The activity of the enzymes of homocysteine biosynthesis was not affected by l-methionine in vitro. It is concluded that pea mitochondria have ability to catalyze the synthesis of methionine de novo.  相似文献   

13.
Adenosine is rapidly metabolized by isolated rat livers. The major products found in the perfusate were inosine and uric acid while hypoxanthine could also be detected. S-Adenosylhomocysteine was also excreted when the liver was perfused with both adenosine and L-homocysteine. A considerable portion of the added adenosine was salvaged via the adenosine kinase reaction. The specific radioactivity of the resultant AMP reached 75–80% of the added [8-14C]adenosine within 90 min. When the liver was perfused with adenosine alone, hydrolysis of S-adenosyllhomosysteine, via S-adenosylhomocysteine hydrolase, appeared to be blocked resulting in the accumulation of this compound. As the intracellular level of S-adenosylhomocysteine increased, the rates of various methyltransferase reactions were reduced, resulting in elevated levels of intracellular S-adenosylmethionine. When the liver was perfused with normal plasma levels of methionine the S-adenosylmethionine : S-adenosylhomocysteine ratio was 5.3 and the half-life of the methyl groups was 32 min. Upon further addition of adenosien the S-adenosylmethionine : S-adenosylhomocysteine ratio shifted to 1.7 and the half-life of the methyl groups to 103 min. In the presence of adenosine and L-homocysteine such inordinate amounts of S-adenosylhomocysteine accumulated in the cell that methylation reactions were completely inhibited. Although adenine has been found to be a product of the S-adenosylhomocysteine hydrolase only trace quantities of this compound were detectable in the tissue after perfusing the liver with high concentrations of adenosine for 90 min.  相似文献   

14.
High pressure liquid chromatography was used to demonstrate that chelation of Mg2+ into protoporphyrin IX precedes methylation in isolated greening etioplasts from cucumber (Cucumis sativus L. var. Beit Alpha) cotyledons. Mg-protoporphyrin IX synthesized in vitro from protoporphyrin IX, Mg2+, and ATP or exogenous Mg-protoporphyrin IX could serve as substrates for the methylation step. In either case, S-adenosylmethionine was the methyl donor and could not be replaced by ATP plus methionine.  相似文献   

15.
S-Adenosylmethionine decarboxylase was purified from the livers of calves treated with methylglyoxal bis (guanylhydrazone) to elevate the level of the enzyme. Purified bovine S-adenosylmethionine decarboxylase was similar in specific activity and subunit molecular weight (32 000) to the enzymes previously isolated from rat and mouse. The bovine liver enzyme immunologically crossreacted with S-adenosylmethionine decarboxylase from resting and mitogenically activated bovine lymphocytes. The rate of enzyme synthesis in activated lymphocytes was determined by labeling the cells with [3H]leucine and isolating the radioactive decarboxylase by affinity chromatography and sodium dodecyl sulfate gel electrophoresis. The rate of enzyme syntheis was increased 10-fold by 9 h after mitogen treatment, which accounts for the initial increase in cellular enzymatic. There was no further incraese in the rate of S-adenosylmethionine decarboxylase synthesis that correlated with a second elevation of activity occuring at approx. 24 h after mitogenic activation. It was concluded that the second increase in enzyme activity was due to lengthening the intracellular half-life of the enzyme by 2-fold.  相似文献   

16.
The effects of reaction products on the steady-state kinetic properties of the five charge isozymes of rabbit adrenal norepinephrine N-methyl transferase have been investigated. Qualitative and quantitative differences were observed for the isozymes. The only characteristic that was common to all isozymes was the competition between S-adenosylmethionine and S-adenosylhomocysteine for the binding site. In most instances, the product inhibition constants were sufficiently low to suggest that product inhibition may be an important factor in regulating the activities of the isozymes. A reaction model is proposed for rabbit adrenal norepinephrine N-methyl transferase which is consistent with results observed in investigations of the steady-state kinetic properties of the five charge isozymes. The proposed model is that of an ordered sequential reaction sequence in which the active center contains a binding site for S-adenosylmethionine and S-adenosylhomocysteine, and a binding site for norepinephrine and epinephrine. The proposed model includes the formation of a number of abortive complexes between enzyme and substrate and product, but not all of the abortive complexes are significant kinetically in the case of some of the isozymes. The differences in the steady-state kinetic characteristics of the isozymes are attributed to differences in the magnitudes of the rate constants of some of the individual steps.  相似文献   

17.
Magnesium protoporphyrin IX O-methyltransferase (ChlM) catalyzes transfer of the methyl group from S-adenosylmethionine to the carboxyl group of the C13 propionate side chain of magnesium protoporphyrin IX. This reaction is the second committed step in chlorophyll biosynthesis from protoporphyrin IX. Here we report the crystal structures of ChlM from the cyanobacterium Synechocystis sp. PCC 6803 in complex with S-adenosylmethionine and S-adenosylhomocysteine at resolutions of 1.6 and 1.7 Å, respectively. The structures illustrate the molecular basis for cofactor and substrate binding and suggest that conformational changes of the two “arm” regions may modulate binding and release of substrates/products to and from the active site. Tyr-28 and His-139 were identified to play essential roles for methyl transfer reaction but are not indispensable for cofactor/substrate binding. Based on these structural and functional findings, a catalytic model is proposed.  相似文献   

18.
Putrescine N-methyltransferase (PMT) catalyses S-adenosylmethionine (SAM) dependent methylation of the diamine putrescine. The product N-methylputrescine is the first specific metabolite on the route to nicotine, tropane, and nortropane alkaloids. PMT cDNA sequences were cloned from tobacco species and other Solanaceae, also from nortropane-forming Convolvulaceae and enzyme proteins were synthesised in Escherichia coli. PMT activity was measured by HPLC separation of polyamine derivatives and by an enzyme-coupled colorimetric assay using S-adenosylhomocysteine. PMT cDNA sequences resemble those of plant spermidine synthases (putrescine aminopropyltransferases) and display little similarity to other plant methyltransferases. PMT is likely to have evolved from the ubiquitous enzyme spermidine synthase. PMT and spermidine synthase proteins share the same overall protein structure; they bind the same substrate putrescine and similar co-substrates, SAM and decarboxylated S-adenosylmethionine. The active sites of both proteins, however, were shaped differentially in the course of evolution. Phylogenetic analysis of both enzyme groups from plants revealed a deep bifurcation and confirmed an early descent of PMT from spermidine synthase in the course of angiosperm development.  相似文献   

19.
The restriction endonuclease coded by the Escherichia coli plasmid P15 cleaves unmodified DNA in the presence of ATP and magnesium ions. This reaction is stimulated by the addition of S-adenosylmethionine. Both ATP and S-adenosylmethionine behave as allosteric effectors. The enzyme forms a complex with unmodified DNA in the absence of S-adenosylmethionine and ATP. Neither the rate of complex formation nor its stability is significantly affected by S-adenosylmethionine. The reaction of ATP with this complex is a late step in the reaction sequence prior to DNA cleavage and is affected by the presence of S-adenosylmethionine.  相似文献   

20.
Synthesis of cyclopropane fatty acids in isolated bacterial membranes   总被引:1,自引:0,他引:1  
Isolated E. coli membrane vesicles can synthesize cyclopropane fatty acids from S-adenosylmethionine using endogenous membrane phospholipid as the lipidsubstrate. The major methylated products are methylenehexadecanoic acid and methyleneoctadecenoic acid esterified to phosphatidylethanolamine. The membrane system is slightly stimulated by sodium dodecyl sulfate at low concentrations but is inhibited by neutral surfactants. The reaction is inhibited by phospholipase C and phospholipase A. The Arrhenius plot for the enzyme reaction is discontinuous over the temperature range 0–35 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号