首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During thylakoid membrane biogenesis, chlorophyll (Chl) biosynthesis and the accumulation of Chl-binding proteins are tightly linked, light-regulated processes. We have investigated the consequences faced by mutant plants with defects in Chl biosynthesis by studying a series of five homeologous allelic chlorina mutants in wheat (Triticum) and one phenotypically related barley (Hordeum vulgare) mutant that express the same pleiotropic mutant phenotype but to different extents. These mutants accumulate Chl at different rates, with the most severely affected plants having the slowest rate of Chl accumulation. Analysis of precursor pools in the Chl synthesis pathway indicates they have a partial block in Chl synthesis and accumulate protoporphyrin IX (Proto), the last porphyrin compound common to both heme and Chl synthesis. The affected plants with the most severe phenotypes accumulate the most Proto. Chloroplasts isolated from these mutants exhibit a lower activity of the enzyme Mg-chelatase, which catalyzes the first committed step in Chl synthesis. The most severely affected plants exhibit the greatest reduction in Mg-chelatase activity. Heme levels and protoporphyrinogen oxidase activity were the same for mutant and wild-type plants. We suggest that a block in Mg-chelatase activity in these mutants could account for the other traits of their pleiotropic phenotype previously described in the literature.  相似文献   

3.
植物叶绿体镁离子螯合酶是四吡咯化合物生物合成途径中合成叶绿素分支(镁分支)的第一个酶,它催化镁离子螯合到原卟啉IX中,形成镁原卟啉IX. 镁离子螯合酶是1个由3个亚基H、D和I组成的多亚基酶,3个亚基均由细胞核编码,进入叶绿体发挥功能.该酶不仅控制着叶绿素的合成,其各个亚基还具有很多其它的功能:H亚基既是ABA受体,又参与叶绿体到细胞核的反向信号传导;D亚基也与叶绿体到细胞核的反向信号传导有关. 本文利用酵母双杂交技术,将编码豌豆镁离子螯合酶D亚基的cDNA片段构建到诱饵载体pGBKT7中,分别用共转化的方法筛选豌豆叶片细胞核编码的均一化cDNA文库和用Mating的方法筛选豌豆叶片叶绿体编码的均一化cDNA文库,共得到121个候选克隆,其中有60个克隆共编码21个叶绿体蛋白质,19个来自于核基因编码,2个来自于叶绿体基因编码. 这些候选蛋白参与叶绿素合成、卡尔文循环、叶绿体蛋白质翻译和叶绿体基因转录等多个代谢过程. 酵母点对点和GST-pull down对其中的4个蛋白做了进一步的验证.这些结果将为D亚基的功能研究提供进一步的线索.  相似文献   

4.
We have analyzed precursor pools in the chlorophyll (Chi) synthesis pathway for a set of eighteen well studied Chl b -defident mutants in monocotyledonous (barley, maize and wheat) and dicotyledonous plants ( Antirrhinum, Arabidopsis , soybean, tobacco and tomato) that form abnormal thylakoid membrane systems. All of these mutants have a partial block in Chl synthesis and nearly all of them accumulate protoporphyrin IX (Proto), the last porphyrin compound common to both heme and Chl synthesis. The large number of mutants at several genetic loci affecting this critical branchpoint in tetrapyrrole biosynthesis suggests that the Mg-chelatase enzyme, catalyzing the first committed step of Chi biosynthesis, is a multimeric complex composed of the products of some of these genetic loci, and perhaps regulated by others. We hypothesize that these mutants are Chi b -deficient and have reduced amounts of light-harvesting antenna complexes (LHCs.) and develop abnormal thylakoid membranes as a direct result of limited Chl synthesis. The observed bottleneck in Chl synthesis can also explain the light-intensity-dependent and temperature-dependent expression of the mutant phenotype. This hypothesis offers a simple explanation for the wide variety of pbenotypes that have been reported for the many Chl-deficient mutants in the literature. Our findings are also consistent with the notion that Chl b is made from "left over" Chl a molecules and suggest that the Chi b -deficient mutants should be considered more appropriately as leaky Chl-deficient mutants.  相似文献   

5.
Photosynthetic organisms exhibit a green color due to the accumulation of chlorophyll pigments in chloroplasts. Mg-protoporphyrin IX chelatase (Mg-chelatase) comprises three subunits (ChlH, ChlD and ChlI) and catalyzes the insertion of Mg2+ into protoporphyrin IX, the last common intermediate precursor in both chlorophyll and heme biosyntheses, to produce Mg-protoporphyrin IX (MgProto). Chlorophyll deficiency in higher plants results in chlorina (yellowish-green) phenotype. To date, 10 chlorina (chl) mutants have been isolated in rice, but the corresponding genes have not yet been identified. Rice Chl1 and Chl9 genes were mapped to chromosome 3 and isolated by map-based cloning. A missense mutation occurred in a highly conserved amino acid of ChlD in the chl1 mutant and ChlI in the chl9 mutant. Ultrastructural analyses have revealed that the grana are poorly stacked, resulting in the underdevelopment of chloroplasts. In the seedlings fed with aminolevulinate-dipyridyl in darkness, MgProto levels in the chl1 and chl9 mutants decreased up to 25% and 31% of that in wild-type, respectively, indicating that the Mg-chelatase activity is significantly reduced, causing the eventual decrease in chlorophyll synthesis. Furthermore, Northern blot analysis indicated that the nuclear genes encoding the three subunits of Mg-chelatase and LhcpII in chl1 mutant are expressed about 2-fold higher than those in WT, but are not altered in the chl9 mutant. This result indicates that the ChlD subunit participates in negative feedback regulation of plastid-to-nucleus in the expression of nuclear genes encoding chloroplast proteins, but not the ChlI subunit.Haitao Zhang and Jinjie Li contributed equally to this work  相似文献   

6.
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.  相似文献   

7.
The current concepts of chlorophyll biosynthesis, its interplastid localization, biosynthetic and biochemical heterogeneity, mechanisms of regulation of the key reactions, formation of 5-aminolevulinic acid and incorporation of magnesium into protoporphyrin IX, are reviewed. The literature and author's data demonstrate the existence of in vivo multienzyme systems synthesizing chlorophyll and its precursors as monovinyl and divinyl chemical species. Both types of the multienzyme systems synthesize 5-aminolevulinic acid and regulate this process independently. A hypothesis is considered that the function of the magnesium branch of chlorophyll biosynthesis in vivo is controlled by a mechanism through inhibition of the enzymes by their products because of the limitation of the binding sites for them in the membrane. An additional influence of light on the Mg-chelatase activity not only via the photosynthetic supply with ATP but also through the light-induced synthesis of the enzyme molecules de novo is described. Efficient energy migration from protoporphyrin IX and Mg-protoporphyrin IX (monomethyl ester) molecules to the protochlorophyllide active form detected by the author is discussed considering a close location of these pigments in plastid membranes and the enzymes participating in their formation.  相似文献   

8.
Magnesium (Mg) chelatase is a heterotrimeric enzyme complex that catalyzes a key regulatory and enzymatic reaction in chlorophyll biosynthesis, the insertion of Mg(2+) into protoporphyrin IX. Studies of the enzyme complex reconstituted in vitro have shown that all three of its subunits, CHL I, CHL D, and CHL H, are required for enzymatic activity. However, a new T-DNA knockout mutant of the chlorina locus, ch42-3 (Chl I), in Arabidopsis is still able to accumulate some chlorophyll despite the absence of Chl I mRNA and protein. In barley (Hordeum vulgare), CHL I is encoded by a single gene. We have identified an open reading frame that apparently encodes a second Chl I gene, Chl I2. Chl I1 and Chl I2 mRNA accumulate to similar levels in wild type, yet CHL I2 protein is not detectable in wild type or ch42-3, although the protein is translated and stromally processed as shown by in vivo pulse labeling and in vitro chloroplast imports. It is surprising that CHL D accumulates to wild-type levels in ch42-3, which is in contrast to reports that CHL D is unstable in CHL I-deficient backgrounds of barley. Our results show that limited Mg chelatase activity and CHL D accumulation can occur without detectable CHL I, despite its obligate requirement in vitro and its proposed chaperone-like stabilization and activation of CHL D. Thus, the unusual post-translational regulation of the CHL I2 protein provides an opportunity to study the different steps involved in stabilization and activation of the heterotrimeric Mg chelatase in vivo.  相似文献   

9.
To understand the impact of water stress on the greening process, water stress was applied to 6-day-old etiolated seedlings of a drought-sensitive cultivar of rice (Oryza sativa), Pusa Basmati-1 by immersing their roots in 40 mm polyethylene glycol (PEG) 6000 (-0.69 MPa) or 50 mm PEG 6000 (-1.03 MPa) dissolved in half-strength Murashige and Skoog (MS)-nutrient-solution, 16 h prior to transfer to cool-white-fluorescent + incandescent light. Chlorophyll (Chl) accumulation substantially declined in developing water-stressed seedlings. Reduced Chl synthesis was due to decreased accumulation of chlorophyll biosynthetic intermediates, that is, glutamate-1-semialdehyde (GSA), 5-aminolevulinic acid, Mg-protoporphyrin IX monomethylester and protochlorophyllide. Although 5-aminolevulinic acid synthesis decreased, the gene expression and protein abundance of the enzyme responsible for its synthesis, GSA aminotransferase, increased, suggesting its crucial role in the greening process in stressful environment. The biochemical activities of Chl biosynthetic enzymes, that is, 5-aminolevulinic acid dehydratase, porphobilinogen deaminase, coproporphyrinogen III oxidase, porphyrinogen IX oxidase, Mg-chelatase and protochlorophyllide oxidoreductase, were down-regulated due to their reduced protein abundance/gene expression in water-stressed seedlings. Down-regulation of protochlorophyllide oxidoreductase resulted in impaired Shibata shift. Our results demonstrate that reduced synthesis of early intermediates, that is, GSA and 5-aminolevulinic acid, could modulate the gene expression of later enzymes of Chl biosynthesis pathway.  相似文献   

10.
11.
Mg-protoporphyrin IX chelatase catalyzes insertion of the magnesium ion into protoporphyrin IX, the last common intermediate precursor in chlorophyll and heme biosynthesis, to form Mg-protoporphyrin IX. In Rhodobacter sphaeroides, and Synechocystis, the three open reading frames bchD/chlD, bchH/chlH and bchl/chll encode proteins which are required for in vitro Mg-chelatase activity. In higher plants also, three proteins are necessary for the Mg chelation, and genes homologous to bchH and bchl have been isolated previously. In this study, a novel tobacco cDNA sequence homologous to bchD is isolated and initially characterized. Together with the tobacco clones encoding the other two subunits, full-length cDNAs are now available for the first time for all three subunits of one plant species. The CHL D polypeptide deduced from the open reading frame encodes a protein of 758 aa (82.9 kDa) with an amino terminal extension that resembles a plastid transit peptide. Sequence comparison of tobacco CHL D revealed similarities to the D subunit of Rhodobacter and Synechocystis of 44% and 75%. The amino terminal half of CHL D shows significant similarity (46%) to the entire CHL I peptide sequence, indicating a gene duplication from an ancestral gene. The carboxy terminal half seemed to be unique. Both parts of CHL D are linked with a glutamine/asparagine/proline-rich region flanked by a highly acid-rich segment. Protein-protein interaction among the three subunits CHL D, H and I was studied using the yeast two-hybrid system. Physical interaction was demonstrated between CHL D and CHL I indicating that CHL D is part of the Mg-chelatase. Heterodimer formation of CHL H with CHL I or CHL D could not be demonstrated by transactivation of the lacZ reporter gene. Homodimerization of the CHL D subunit was indicated in the more sensitive assay on X-Gal-containing agar plates. In vitro Mg2+ insertion into protoporphyrin IX was demonstrated in protein extracts of yeast strains expressing the three subunits of tobacco Mg-chelatase. The reconstitution of the recombinant enzyme activity required additional ATP.  相似文献   

12.
镁螯合酶(magnesium chelatase)是叶绿素合成过程中的关键酶,催化原卟啉IX与Mg2+螯合形成镁原卟啉IX。镁螯合酶由催化亚基H与AAA+亚基I、D组成。通过这3种亚基的协调配合,在ATP驱动下实现Mg2+与原卟啉IX的螯合,推动叶绿素的合成。在这一过程中,基因组解偶联基因4(GUN4)蛋白对其发挥重要的正调控作用。自上世纪90年代以来,镁螯合酶独特的结构及其作用机制一直吸引着研究者们的兴趣。本文结合最新的研究进展,阐述镁螯合酶的结构、酶促反应动力学及其催化机制等。另外,对于GUN4蛋白对镁螯合酶的调控也进行了概述。  相似文献   

13.
The effect of acifluorfen-methyl on tetrapyrrole synthesis in greening chloroplasts of Cucumis sativus was examined. Formation of Mg-proto-porphyrin IX from δ-aminolevulinate was reduced 98% by 10 micromolar acifluorfen-methyl. Conversion of protoporphyrin IX to Mg-protoporphyrin IX was unaffected, but protoporphyrin IX synthesis from δ-aminolevulinate was blocked, indicating a site of inhibition prior to the Mg-chelatase. The enzymic oxidation of protoporphyrinogen IX to protoporphyrin IX was highly sensitive to acifluorfen-methyl, indicating that the site of action of the herbicide is the protoporphyrinogen oxidase. (© 1989 FMC Corporation. All rights reserved.)  相似文献   

14.
15.
Mg-chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX at the first committed step of the chlorophyll biosynthetic pathway. It consists of three subunits: I, D, and H. The I subunit belongs to the AAA protein superfamily (ATPases associated with various cellular activities) that is known to form hexameric ring structures in an ATP-dependant fashion. Dominant mutations in the I subunit revealed that it functions in a cooperative manner. We demonstrated that the D subunit forms ATP-independent oligomeric structures and should also be classified as an AAA protein. Furthermore, we addressed the question of cooperativity of the D subunit with barley (Hordeum vulgare) mutant analyses. The recessive behavior in vivo was explained by the absence of mutant proteins in the barley cell. Analogous mutations in Rhodobacter capsulatus and the resulting D proteins were studied in vitro. Mixtures of wild-type and mutant R. capsulatus D subunits showed a lower activity compared with wild-type subunits alone. Thus, the mutant D subunits displayed dominant behavior in vitro, revealing cooperativity between the D subunits in the oligomeric state. We propose a model where the D oligomer forms a platform for the stepwise assembly of the I subunits. The cooperative behavior suggests that the D oligomer takes an active part in the conformational dynamics between the subunits of the enzyme.  相似文献   

16.
17.
Chlorophyll (Chl) biosynthesis in chill (7°C)- and heat (42°C)-stressed cucumber (Cucumis sativus L. cv poinsette) seedlings was affected by 90 and 60%, respectively. Inhibition of Chl biosynthesis was partly due to impairment of 5-aminolevulinic acid biosynthesis both in chill- (78%) and heat-stress (70%) conditions. Protochlorophyllide (Pchlide) synthesis in chill- and heat-stressed seedlings was inhibited by 90 and 70%, respectively. Severe inhibition of Pchlide biosynthesis in chill-stressed seedlings was caused by inactivations of all of the enzymes involved in protoporphyrin IX (Proto IX) synthesis, Mg-chelatase, and Mg-protoporphyrin IX monoester cyclase. In heat-stressed seedlings, although 5-aminolevulinic acid dehydratase and porphobilinogen deaminase were partially inhibited, one of the porphyrinogen-oxidizing enzymes, uroporphyrinogen decarboxylase, was stimulated and coproporphyrinogen oxidase and protoporphyrinogen oxidase were not substantially affected, which demonstrated that protoporphyrin IX synthesis was relatively more resistant to heat stress. Pchlide oxidoreductase, which is responsible for phototransformation of Pchlide to chlorophyllide, increased in heat-stress conditions by 46% over that of the control seedlings, whereas it was not affected in chill-stressed seedlings. In wheat (Triticum aestivum L. cv HD2329) seedlings porphobilinogen deaminase, Pchlide synthesis, and Pchlide oxidoreductase were affected in a manner similar to that of cucumber, suggesting that temperature stress has a broadly similar effect on Chl biosynthetic enzymes in both cucumber and wheat.  相似文献   

18.
Mg-chelatase catalyzes the first step unique to the chlorophyll branch of tetrapyrrole biosynthesis, namely the insertion of Mg into protoporphyrin IX (Proto). Mg-chelatase was assayed in intact chloroplasts from semi-green cucumber (Cucumis sativus, cv Sumter) cotyledons. In the presence of Proto and MgATP, enzyme activity was linear for 50 minutes. Plastid intactness was directly related to (and necessary for) Mg-chelatase activity. Uncouplers and ionophores did not inhibit Mg-Chelatase in the presence of ATP. The nonhydrolyzable ATP analogs, β,γ-methylene ATP and adenylylimidodiphosphate, could not sustain Mg-chelatase activity alone and were inhibitory in the presence of ATP (I50 10 and 3 millimolar, respectively). Mg-chelatase was also inhibited by N-ethylmaleimide (I50, 50 micromolar) and the metal ion chelators 2,2′-dipyridyl and 1, 10 phenanthroline (but not to the same degree by their nonchelating analogs). In addition to Proto, the following porphyrins acted as Mg-chelatase substrates, giving comparable specific activities: deuteroporphyrin, mesoporphyrin, 2-ethyl, 4-vinyl Proto and 2-vinyl, 4-ethyl Proto. Mg-chelatase activity and freely exchangeable heme levels increased steadily with greening, reaching a maximum and leveling off after 15 hours in the light. Exogenous protochlorophyllide, chlorophyllide, heme, and Mg-Proto had no measurable effect on Mg-chelatase activity. The potent ferrochelatase inhibitors, N-methylmesoporphyrin and N-methylprotoporphyrin, inhibited Mg-chelatase at micromolar concentrations.  相似文献   

19.
Cytokinin promotes morphological and physiological processes including the tetrapyrrole biosynthetic pathway during plant development. Only a few steps of chlorophyll (Chl) biosynthesis, exerting the phytohormonal influence, have been individually examined. We performed a comprehensive survey of cytokinin action on the regulation of tetrapyrrole biosynthesis with etiolated and greening barley seedlings. Protein contents, enzyme activities and tetrapyrrole metabolites were analyzed for highly regulated metabolic steps including those of 5-aminolevulinic acid (ALA) biosynthesis and enzymes at the branch point for protoporphyrin IX distribution to Chl and heme. Although levels of the two enzymes of ALA synthesis, glutamyl-tRNA reductase and glutamate 1-semialdehyde aminotransferase, were elevated in dark grown kinetin-treated barley seedlings, the ALA synthesis rate was only significantly enhanced when plant were exposed to light. While cytokinin do not stimulatorily affect Fe-chelatase activity and heme content, it promotes activities of the first enzymes in the Mg branch, Mg protoporphyrin IX chelatase and Mg protoporphyrin IX methyltransferase, in etiolated seedlings up to the first 5 h of light exposure in comparison to control. This elevated activities result in stimulated Chl biosynthesis, which again parallels with enhanced photosynthetic activities indicated by the photosynthetic parameters F V/F M, J CO2max and J CO2 in the kinetin-treated greening seedlings during the first hours of illumination. Thus, cytokinin-driven acceleration of the tetrapyrrole metabolism supports functioning and assembly of the photosynthetic complexes in developing chloroplasts.  相似文献   

20.
M R Loeb 《Journal of bacteriology》1995,177(12):3613-3615
Previous research showed that the heme-requiring human pathogen Haemophilus influenzae lacks the first six of the seven enzymes required for heme synthesis, starting with the precursor, 5-amino levulinic acid. In this study, I demonstrated either directly or by reasonable inference that all 57 strains of H. influenzae examined, including 2 unable to grow on protoporphyrin IX, possess ferrochelatase, which catalyzes heme formation by insertion of Fe2+ into the protoporphyrin IX nucleus and which is the last enzyme in the heme synthetic pathway. Further, I showed that this enzyme can also function in the reverse direction, releasing Fe2+ from heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号