共查询到17条相似文献,搜索用时 12 毫秒
1.
2.
Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells 总被引:5,自引:0,他引:5
Proteasomal dysfunction has been recently implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and diffuse Lewy body disease. We have developed an in vitro model of proteasomal dysfunction by applying pharmacological inhibitors of the proteasome, lactacystin or ZIE[O-tBu]-A-leucinal (PSI), to dopaminergic PC12 cells. Proteasomal inhibition caused a dose-dependent increase in death of both naive and neuronally differentiated PC12 cells, which could be prevented by caspase inhibition or CPT-cAMP. A percentage of the surviving cells contained discrete cytoplasmic ubiquitinated inclusions, some of which also contained synuclein-1, the rat homologue of human alpha-synuclein. However the total level of synuclein-1 was not altered by proteasomal inhibition. The ubiquitinated inclusions were present only within surviving cells, and their number was increased if cell death was prevented. We have thus replicated, in this model system, the two cardinal pathological features of Lewy body diseases, neuronal death and the formation of cytoplasmic ubiquitinated inclusions. Our findings suggest that inclusion body formation and cell death may be dissociated from one another. 相似文献
3.
Parkinson's disease is characterized by loss of nigral dopaminergic neurons and the presence of cytoplasmic inclusions known as Lewy bodies. alpha-Synuclein and its interacting partner synphilin-1 are among constituent proteins in these aggregates. The presence of ubiquitin and proteasome subunits in these inclusions supports a role for this protein degradation pathway in the processing of proteins involved in this disease. To begin elucidating the kinetics of synphilin-1 in cells, we studied its degradation pathway in HEK293 cells that had been engineered to stably express FLAG-tagged synphilin-1. Pulse-chase experiments revealed that this protein is relatively stable with a half-life of about 16 h. Treatment with proteasome inhibitors resulted in attenuation of degradation and the accumulation of high molecular weight ubiquitinated synphilin-1 in immunoprecipitation/immunoblot experiments. Additionally, proteasome inhibitors stimulated the formation of peri-nuclear inclusions which were immunoreactive for synphilin-1, ubiquitin and alpha-synuclein. Cell viability studies revealed increased susceptibility of synphilin-1 over-expressing cells to proteasomal dysfunction. These observations indicate that synphilin-1 is ubiquitinated and degraded by the proteasome. Accumulation of ubiquitinated synphilin-1 due to impaired clearance results in its aggregation as peri-nuclear inclusions and in poor cell survival. 相似文献
4.
Fornai F Lenzi P Gesi M Soldani P Ferrucci M Lazzeri G Capobianco L Battaglia G De Blasi A Nicoletti F Paparelli A 《Journal of neurochemistry》2004,88(1):114-123
Mice treated with the psychostimulant methamphetamine (MA) showed the appearance of intracellular inclusions in the nucleus of medium sized striatal neurones and cytoplasm of neurones of the substantia nigra pars compacta but not in the frontal cortex. All inclusions contained ubiquitin, the ubiquitin activating enzyme (E1), the ubiquitin protein ligase (E3-like, parkin), low and high molecular weight heat shock proteins (HSP 40 and HSP 70). Inclusions found in nigral neurones stained for alpha-synuclein, a proteic hallmark of Lewy bodies that are frequently observed in Parkinson's disease and other degenerative disorders. However, differing from classic Lewy bodies, MA-induced neuronal inclusions appeared as multilamellar bodies resembling autophagic granules. Methamphetamine reproduced this effect in cultured PC12 cells, which offered the advantage of a simple cellular model for the study of the molecular determinants of neuronal inclusions. PC12 inclusions, similar to those observed in nigral neurones, were exclusively localized in the cytoplasm and stained for alpha-synuclein. Time-dependent experiments showed that inclusions underwent a progressive fusion of the external membranes and developed an electrodense core. Inhibition of dopamine synthesis by alpha-methyl-p-tyrosine (alphaMpT), or administering the antioxidant S-apomorphine largely attenuated the formation of inclusions in PC12 cells exposed to MA. Inclusions were again observed when alphaMpT-treated cells were loaded with l-DOPA, which restored intracellular dopamine levels. 相似文献
5.
Campbell BC McLean CA Culvenor JG Gai WP Blumbergs PC Jäkälä P Beyreuther K Masters CL Li QX 《Journal of neurochemistry》2001,76(1):87-96
Intracellular inclusions containing alpha-synuclein (alpha SN) are pathognomonic features of several neurodegenerative disorders. Inclusions occur in oligodendrocytes in multiple system atrophy (MSA) and in neurons in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). In order to identify disease-associated changes of alpha SN, this study compared the levels, solubility and molecular weight species of alpha SN in brain homogenates from MSA, DLB, PD and normal aged controls. In DLB and PD, substantial amounts of detergent-soluble and detergent-insoluble alpha SN were detected compared with controls in grey matter homogenate. Compared with controls, MSA cases had significantly higher levels of alpha SN in the detergent-soluble fraction of brain samples from pons and white matter but detergent-insoluble alpha SN was not detected. There was an inverse correlation between buffered saline-soluble and detergent-soluble levels of alpha SN in individual MSA cases suggesting a transition towards insolubility in disease. The differences in solubility of alpha SN between grey and white matter in disease may result from different processing of alpha SN in neurons compared with oligodendrocytes. Highly insoluble alpha SN is not involved in the pathogenesis of MSA. It is therefore possible that buffered saline-soluble or detergent-soluble forms of alpha SN are involved in the pathogenesis of other alpha SN-related diseases. 相似文献
6.
Proteasome-mediated proteolysis is a major protein degradation mechanism in cells and its dysfunction has been implicated in the pathogenesis of several neurodegenerative diseases, each with the common features of neuronal death and formation of ubiquitinated inclusions found within neurites, the cell body, or nucleus. Previous models of proteasome dysfunction have employed pharmacological inhibition of the catalytic subunits of the 20S proteasome core, or the genetic manipulation of specific subunits resulting in altered proteasome assembly. In this study, we report the use of dominant negative subunits of the 19S regulatory proteasome complex that mediate the recognition of ubiquitinated substrates as well as the removal of the poly-ubiquitin chain. Interestingly, while each mutant subunit-induced inclusion formation, like that seen with pharmacological inhibition of the 20S proteasome, none was able to induce apoptotic death, or trigger activation of macroautophagy, in either dopaminergic cell lines or primary cortical neurons. This finding highlights the dissociation between the mechanisms of neuronal inclusion formation and the induction of cell death, and represents a novel cellular model for Lewy body-like inclusion formation in neurons. 相似文献
7.
Antje Krenz Björn H. Falkenburger Ellen Gerhardt Anja Drinkut Jörg B. Schulz 《Journal of neurochemistry》2009,108(1):139-146
Synphilin-1 was described as a protein interacting with α-synuclein and is commonly found in Lewy bodies, the pathological hallmark of Parkinson's disease (PD). Our group has previously described and characterized in vitro a mutation in the synphilin-1 gene (R621C) in PD patients. Providing the first characterization of synphilin-1 expression in an animal model, we here used adenoviral gene transfer to study the effects of wild-type (WT) and R621C synphilin-1 in dopaminergic neurons in mouse brain. As synphilin-1 is commonly used to trigger aggregation of α-synuclein in cell culture, we investigated not only non-transgenic C57Bl/6 mice but also A30P-α-synuclein transgenic animals. Both WT synphilin-1 and R621C synphilin-1 led to the formation of Thioflavine-S positive inclusions in C57Bl/6 mice and degeneration of dopaminergic neurons in the substantia nigra. R621C synphilin-1 induced more aggregate formation than WT synphilin-1 in A30P-α-synuclein transgenic mice, consistent with the role of the R621C mutation as a susceptibility factor for PD. Synphilin-1 expression may be used to improve current mouse models of PD, as it induced both the formation of aggregates and degeneration of dopaminergic neurons, two core characteristics of PD that have not been well reproduced with expression of α-synuclein. 相似文献
8.
de Bernardo S Canals S Casarejos MJ Solano RM Menendez J Mena MA 《Journal of neurochemistry》2004,91(3):667-682
To date, glutathione (GSH) depletion is the earliest biochemical alteration shown in brains of Parkinson's disease patients, but the role of GSH in dopamine cell survival is debated. In this study we show that GSH depletion, produced with GSH synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), induces selectively neuronal cell death in neuron/glia, but not in neuronal-enriched midbrain cultures and that cell death occurs with characteristics of necrosis and apoptosis. BSO produces a dose- and time-dependent generation of reactive oxygen species (ROS) in neurons. BSO activates extracellular signal-regulated kinases (ERK-1/2), 4 and 6 h after treatment. MEK-1/2 and lipoxygenase (LOX) inhibitors, as well as ascorbic acid, prevent ERK-1/2 activation and neuronal loss, but the inhibition of nitric oxide sintase (NOS), cyclo-oxygenase (COX), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) does not have protective effects. Co-localization studies show that p-ERK-1/2 expression after BSO treatment increased in astrocytes and microglial cells, but not in neurons. Selective metabolic impairment of glial cells with fluoroacetate decreased ERK activation. However, blockade of microglial activation with minocycline did not. Our results indicate that neuronal death induced by GSH depletion is due to ROS-dependent activation of the ERK-1/2 signalling pathway in glial cells. These data may be of relevance in Parkinson's disease, where GSH depletion and glial dysfunction have been documented. 相似文献
9.
10.
Kyratzi E Pavlaki M Kontostavlaki D Rideout HJ Stefanis L 《Journal of neurochemistry》2007,102(4):1292-1303
Mutations in Parkin, an E3 ligase, which participates in the ubiquitin-proteasome system (UPS), cause juvenile onset Parkinson's disease (PD). Some mutants aggregate upon over-expression, but the effects of such aggregation on the UPS and neuronal survival have not been characterized. We show in this study that transient over-expression of wild type (WT) Parkin or various mutants in human neuroblastoma cells leads to localized accumulation of green fluorescent protein (GFP(u)), an artificial proteasomal substrate, indicative of UPS dysfunction. Parkin mutants, but not WT, aggregated, and GFP(u) and ubiquitin accumulated within such aggregates. Apoptotic death occurred only with mutant Parkin over-expression, and correlated with aggregation, but not GFP(u) accumulation. Enzymatic proteasomal activity was slightly increased with WT Parkin and decreased with mutant Parkin over-expression. This decrease was, at least in part, due to caspase activation. We conclude that mutant forms of Parkin can exert toxic effects on neuronal cells, possibly through their propensity to aggregate. Both WT and mutant forms can induce localized UPS dysfunction, likely through different mechanisms. This raises a note of caution regarding forced over-expression of Parkin as a neuroprotective strategy in PD or other neurodegenerative conditions and suggests a possible toxic gain of function for certain mutant forms of Parkin. 相似文献
11.
Xu Hou Fabienne C. Fiesel Dominika Truban Monica Castanedes Casey Wen-lang Lin Alexandra I. Soto 《Autophagy》2018,14(8):1404-1418
Although exact causes of Parkinson disease (PD) remain enigmatic, mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuron susceptibility in both familial and sporadic PD. Two genes associated with recessive, early-onset PD encode the ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase PRKN/PARK2/Parkin, which together orchestrate a protective mitochondrial quality control (mitoQC) pathway. Upon stress, both enzymes cooperatively identify and decorate damaged mitochondria with phosphorylated poly-Ub (p-S65-Ub) chains. This specific label is subsequently recognized by autophagy receptors that further facilitate mitochondrial degradation in lysosomes (mitophagy). Here, we analyzed human post-mortem brain specimens and identified distinct pools of p-S65-Ub-positive structures that partially colocalized with markers of mitochondria, autophagy, lysosomes and/or granulovacuolar degeneration bodies. We further quantified levels and distribution of the ‘mitophagy tag’ in 2 large cohorts of brain samples from normal aging and Lewy body disease (LBD) cases using unbiased digital pathology. Somatic p-S65-Ub structures independently increased with age and disease in distinct brain regions and enhanced levels in LBD brain were age- and Braak tangle stage-dependent. Additionally, we observed significant correlations of p-S65-Ub with LBs and neurofibrillary tangle levels in disease. The degree of co-existing p-S65-Ub signals and pathological PD hallmarks increased in the pre-mature stage, but decreased in the late stage of LB or tangle aggregation. Altogether, our study provides further evidence for a potential pathogenic overlap among different forms of PD and suggests that p-S65-Ub can serve as a biomarker for mitochondrial damage in aging and disease.
Abbreviations: BLBD: brainstem predominant Lewy body disease; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DLB: dementia with Lewy bodies; DLBD: diffuse neocortical Lewy body disease; EOPD: early-onset Parkinson disease; GVB: granulovacuolar degeneration body; LB: Lewy body; LBD: Lewy body disease; mitoQC: mitochondrial quality control; nbM: nucleus basalis of Meynert; PD: Parkinson disease; PDD: Parkinson disease with dementia; p-S65-Ub: PINK1-phosphorylated serine 65 ubiquitin; SN: substantia nigra; TLBD: transitional Lewy body disease; Ub: ubiquitin 相似文献
12.
Dwayne J. Byrne Mark J. Harmon Jeremy C. Simpson Craig Blackstone Niamh C. OSullivan 《遗传学报》2017,44(10):493-501
The VCP-Ufd1-Npl4 complex regulates proteasomal processing within cells by delivering ubiquitinated proteins to the proteasome for degradation. Mutations in VCP are associated with two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), and extensive study has revealed crucial functions of VCP within neurons. By contrast, little is known about the functions of Npl4 or Ufd1 in vivo. Using neuronal-specific knockdown of Npl4 or Ufd1 in Drosophila melanogaster, we infer that Npl4 contributes to microtubule organization within developing motor neurons. Moreover, Npl4 RNAi flies present with neurodegenerative phenotypes including progressive locomotor deficits, reduced lifespan and increased accumulation of TAR DNA-binding protein-43 homolog (TBPH). Knockdown, but not overexpression, of TBPH also exacerbates Npl4 RNAi-associated adult-onset neurodegenerative phenotypes. In contrast, we find that neuronal knockdown of Ufd1 has little effect on neuromuscular junction (NMJ) organization, TBPH accumulation or adult behaviour. These findings suggest the differing neuronal functions of Npl4 and Ufd1 in vivo. 相似文献
13.
Vanina E. AlvarezGabriela T. Niemirowicz Juan J. Cazzulo 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(1):195-206
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, contains cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes is cruzipain, a cysteine proteinase expressed as a mixture of isoforms, some of them membrane-bound. The enzyme is an immunodominant antigen in human chronic Chagas disease and seems to be important in the host/parasite relationship. Inhibitors of cruzipain kill the parasite and cure infected mice, thus validating the enzyme as a very promising target for the development of new drugs against the disease. In addition, a 30 kDa cathepsin B-like enzyme, two metacaspases and two autophagins have been described. Serine peptidases described in the parasite include oligopeptidase B, a member of the prolyl oligopeptidase family involved in Ca2+-signaling during mammalian cell invasion; a prolyl endopeptidase (Tc80), against which inhibitors are being developed, and a lysosomal serine carboxypeptidase. Metallopeptidases homologous to the gp63 of Leishmania spp. are present, as well as two metallocarboxypeptidases belonging to the M32 family, previously found only in prokaryotes. The proteasome has properties similar to those of other eukaryotes, and its inhibition by lactacystin blocks some differentiation steps in the life cycle of the parasite. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome. 相似文献
14.
Makoto Nishizuka Ayumi Kato Masaru Okabe Hiroyuki Niida Shigehiro Osada 《Experimental cell research》2009,315(5):809-2123
The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration. 相似文献
15.
16.
P. Olaizola P.Y. Lee-Law A. Arbelaiz A. Lapitz M.J. Perugorria L. Bujanda J.M. Banales 《生物化学与生物物理学报:疾病的分子基础》2018,1864(4):1293-1307
Cholangiopathies encompass a heterogeneous group of disorders affecting biliary epithelial cells (i.e. cholangiocytes). Early diagnosis, prognosis and treatment still remain clinically challenging for most of these diseases and are critical for adequate patient care. In the past decade, extensive research has emphasized microRNAs (miRs) as potential non-invasive biomarkers and tools to accurately identify, predict and treat cholangiopathies. MiRs can be released extracellularly conjugated with lipoproteins or encapsulated in extracellular vesicles (EVs). Research on EVs is also gaining attention since they are present in multiple biological fluids and may represent a relevant source of novel non-invasive biomarkers and be vehicles for new therapeutic approaches. This review highlights the most promising candidate miRs and EV-related biomarkers in cholangiopathies, as well as their relevant roles in biliary pathophysiology. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Research strategy
PubMed search (April 2017) was done with the following terms: “microRNA”, “miRNA”, “miR”, “extracellular vesicles”, “EV”, “exosomes”, “primary biliary cholangitis”, “primary biliary cholangitis”, “PBC”, “primary sclerosing cholangitis”, “PSC”, “cholangiocarcinoma”, “CCA”, “biliary atresia”, “BA”, “polycystic liver diseases”, “PLD”, “cholangiopathies”, “cholestatic liver disease”. Most significant articles in full-text English were selected. The reference lists of selected papers were also considered. 相似文献17.
Michael R. Heaven Anthony W. Herren Daniel L. Flint Natasha L. Pacheco Jiangtao Li Alice Tang Fatima Khan James E. Goldman Brett S. Phinney Michelle L. Olsen 《Molecular & cellular proteomics : MCP》2022,21(1):100180
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice. 相似文献