首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
3.
Hoxc13在毛囊发育中的作用   总被引:5,自引:0,他引:5  
Hoxc13属于Hox(Homobox)基因家族Abd-B类成员之一, 与毛囊形成和毛发生长密切相关。毛发结构蛋白KP(角蛋白)和KAP(角蛋白关联蛋白)的表达都受Hoxc13的严格调控, Hoxc13表达水平会直接影响毛发的特性, 对维持毛囊的正常形态也至关重要。文章就Hoxc13的表达水平对毛囊发育和毛发生长的影响及Hoxc13与相关基因的调控进行了综述。  相似文献   

4.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   

5.
We examine the Hoxc12 RNA expression pattern during both hair follicle morphogenesis and cycling in direct comparison to its only upstream neighbor, Hoxc13. Expression of both genes is restricted to the epidermal part of the follicle excluding the outer root sheath and interfollicular epidermis in a distinct stage-dependent and cyclical manner. During the progressive growth phase (anagen) of developing and cycling follicles, the distinct proximo-distal expression domain of Hoxc12 overlaps only proximally, at the upper-most region of the bulb, with the more proximally restricted Hoxc13 domain. This arrangement of the expression domains of the two genes along the proximal-toward-distal axis of increasing follicular differentiation correlates with the sequential expression of first Hoxc13 and then Hoxc12. This indicates a reversal of the typical temporal colinearity of Hox gene activation otherwise observed along the anterior-posterior morphogenetic axis of the embryo (review: Cell 78 (1994) 191).  相似文献   

6.
Hair follicle development serves as an excellent model to study control of organ morphogenesis. Three specific isoforms of TGF-beta exist which exhibit a distinct pattern of expression during hair follicle morphogenesis. To clarify the still elusive role of these factors in hair follicle development, we have used a combined genetic and functional approach: analysis of hair follicle development in mice with disruptions of the TGF-beta1, 2, and 3 genes was coupled with a direct functional test of the effect of added purified factors on fetal hair follicle development in skin organ cultures. TGF-beta2 null mice exhibited a profound delay of hair follicle morphogenesis, with a 50% reduced number of hair follicles. In contrast to hair follicle development, growth and differentiation of interfollicular keratinocytes proceeded unimpaired. Unlike TGF-beta2-/- mice, mice with a disruption of the TGF-beta1 gene showed slightly advanced hair follicle formation, while lack of the TGF-beta3 gene did not have any effects. Treatment of wild-type, embryonic skin explants (E14.5 or E15.5) with TGF-beta2 protein in either soluble form or slow release beads induced hair follicle development and epidermal hyperplasia, while similar TGF-beta1 treatment exerted suppressive effects. Thus, the TGF-beta2 isoform plays a specific role, not shared by the other TGF-beta isoforms, as an inducer of hair follicle morphogenesis and is both required and sufficient to promote this process.  相似文献   

7.
8.
Studying the roles of Hox genes in normal and pathological development of skin and hair requires identification of downstream target genes in genetically defined animal models. We show that transgenic mice overexpressing Hoxc13 in differentiating keratinocytes of hair follicles develop alopecia, accompanied by a progressive pathological skin condition that resembles ichthyosis. Large-scale analysis of differential gene expression in postnatal skin of these mice identified 16 previously unknown and 13 known genes as presumptive Hoxc13 targets. The majority of these targets are downregulated and belong to a subgroup of genes that encode hair-specific keratin-associated proteins (KAPs). Genomic mapping using a mouse hamster radiation hybrid panel showed these genes to reside in a novel KAP gene cluster on mouse chromosome 16 in a region of conserved linkage with human chromosome 21q22.11. Furthermore, data obtained by Hoxc13/lacZ reporter gene analysis in mice that overexpress Hoxc13 suggest negative autoregulatory feedback control of Hoxc13 expression levels, thus providing an entry point for elucidating currently unknown mechanisms that are required for regulating quantitative levels of Hox gene expression. Combined, these results provide a framework for understanding molecular mechanisms of Hoxc13 function in hair growth and development.  相似文献   

9.
10.
Reciprocal interactions between the dermal papilla and the hair matrix control proliferation and differentiation in the mature hair follicle. Analysis of expression suggests an important role for FGF7 and FGF10, as well as their cognate receptor FGFR2-IIIb, in these processes. Transgenic mice that express a soluble dominant-negative version of this receptor in differentiating hair keratinocytes were generated to interfere with endogenous FGF signalling. Transgenic mice develop abnormally thin but otherwise normal hairs, characterised by single columns of medulla cells in all hair types. All structural defects and the accompanying changes of global gene expression patterns are restricted to the hair medulla. Forced transgenic expression of IGF-binding protein 5, whose expression level is elevated upon suppression of FGFR2-IIIb-mediated signalling largely phenocopies the defect of dnFgfr2-IIIb-expressing hairs. Thus, the results identify Igfbp5-mediated FGFR2-IIIb signals as a key regulator of the genetic program that controls the structure of the hair shaft medulla.  相似文献   

11.
In this review article the data about synthesis and gene regulation of keratin by hair follicles have been summarized. It has been shown that both differentiation of hair follicle matrix cells and normal growth of hair require the coordinated activities of the genes encoding structural proteins. The keratin genes are clustered in families and are usually 5-10 kb in the genome. The separate clusters of two keratin IF gene families and five KAP gene families have been discovered and some of them have been mapped. The close relation between these clusters suggests that the "global" regulatory domains might govern their expression.  相似文献   

12.
13.
Investigations of the signalling between epithelial and mesenchymal compartments of skin during hair follicle initiation in utero and hair cycling have revealed the importance of the TGFβ superfamily in ectodermal organogenesis and morphogenesis. In particular the activins, their receptors and binding proteins such as follistatin, have been shown to be important regulators of cell proliferation, differentiation and apoptosis in hair follicle initiation, hair cycling, normal skin homeostasis and wound healing. Transgenic mice lacking various components of the activin signalling pathways display varying ectodermal pathologies including altered pelage hair follicle initiation. This review summarises the activin signal transduction pathways and the interactions between activins and other TGFβ signalling systems during hair follicle formation, hair growth cycling, skin function and wound healing.  相似文献   

14.
Axial patterning is a recurrent theme during embryonic development. To elucidate its fundamental principles, the hair follicle is an attractive model due to its easy accessibility and dispensability. Hair follicle asymmetry is evident from its angling and the localization of associated structures. However, axial patterning is not restricted to the follicle itself but also generates rotational hair shaft asymmetry which, for zigzag hairs, generates 3-4 bends that alternately point into opposite directions. Here we show by analyzing mutant and transgenic mice that WNT and ectodysplasin signaling are involved in the control of the molecular and morphological asymmetry of the follicle and the associated hair shaft, respectively. Asymmetry is affected by polarized WNT and ectodysplasin signaling in mature hair follicles. When endogenous signaling is impaired, molecular asymmetry is lost and mice no longer form zigzag hairs. Both signaling pathways affect the polarized expression of Shh which likely functions as a directional reference for hair shaft production in all follicles. We propose that this regulatory pathway also establishes follicular asymmetry during morphogenesis. Moreover, the identified molecular hierarchy offers a model for the periodic patterning of zigzag hairs mechanistically similar to mesodermal segmentation.  相似文献   

15.
16.
近年来,转录组测序技术在动物重要经济性状受复杂基因网络的调控研究领域取得了显著的成果。作为哺乳动物皮肤的衍生物,毛囊是唯一具有高度自我更新能力、独特的可再生器官,毛囊细胞经增殖分化最终形成毛发。已有的研究表明,诸多生长因子及其受体作为体内分泌协调基因的重要因素,对毛发的生长发育起着重要的调控作用。文章综述了近年来转录组测序技术在人、小鼠及羊等生物的皮肤毛囊发育和再生过程中基因调控方式的研究进展,旨在为今后人工干扰绒毛周期生长发育和分子育种提供理论依据,同时也为皮肤毛囊相关疾病的临床治疗提供新思路。  相似文献   

17.
Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13–22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfβ pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. J. Cell. Physiol. 225: 482–489, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Vertebrate Hox genes regulate many aspects of embryonic body plan development and patterning. In particular, Hox genes have been shown to regulate regional patterning of the axial and appendicular skeleton and of the central nervous system. We have identified patterning defects resulting from the targeted mutation of Hoxc10, a member of the Hox10 paralogous family. Hoxc10 mutant mice have skeletal transformations in thoracic, lumbar, and sacral vertebrae and in the pelvis, along with alterations in the bones and ligaments of the hindlimbs. These results suggest that Hoxc10, along with other members of the Hox10 paralogous gene family, regulates vertebral identity at the transition from thoracic to lumbar and lumbar to sacral regions. Our results also suggest a general role for Hoxc10 in regulating chondrogenesis and osteogenesis in the hindlimb, along with a specific role in shaping femoral architecture. In addition, mutant mice have a reduction in lumbar motor neurons and a change in locomotor behavior. These results suggest a role for Hoxc10 in generating or maintaining the normal complement of lumbar motor neurons.  相似文献   

19.
20.
Hair growth in mouse mutants affecting coat texture   总被引:1,自引:0,他引:1  
Monica J.  Trigg 《Journal of Zoology》1972,168(2):165-198
The genetic control of hair growth has been studied in mice carrying the following coat texture genes: fz (fuzzy), soc (soft coat), hid (hair interior defect), sa (satin), It (lustrous), Ve (velvet), wa-1 (waved-1), Re (rex), Re wc (wavy coat) and pk (plucked).
A general effect on cells of epidermal origin, found in soc/soc and Ve /+ skin samples illustrates how common factors control developmental potential in both the stratum germinativum and the follicle bulb. A direct influence on follicle bulb development is also seen in fz/fz homozygotes in which the dermal papilla functions abnormally. The role of the bulb cells and the dermal papilla in the control of hair shaft calibre is discussed.
hid is a new gene, found in homozygous condition in all mice of the AKR inbred strain. hid and sa appear primarily to be concerned in the differentiation of the medulla.
In the hair waving mutants, waved-1, rex and wavy coat, the processes controlling hair movement within the follicle are disturbed. These genes appear to regulate internal root sheath function. When the normal relationship between internal root sheath and developing hair shaft is disturbed, shaft movement slows, with the subsequent development of shaft calibre abnormalities.
pk acts at the level of the sebaceous gland, disturbing the normal process of hair eruption. The roles of the internal root sheath, external root sheath and the sebaceous gland in hair eruption are discussed.
The abnormal epidermal layer in soc/soc and Ve /+ skin also disturbs hair eruption to a small extent. The resulting abnormalities this causes in hair shaft formation are compared with those found pk/pk samples and also with the similar effects of faulty hair movement in the hair waving mutants. An effect on pigmentation is also described.
The chemistry of keratinization appears to be normal in all these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号