首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently integrated Alu elements and human genomic diversity   总被引:8,自引:0,他引:8  
A comprehensive analysis of two Alu Y lineage subfamilies was undertaken to assess Alu-associated genomic diversity and identify new Alu insertion polymorphisms for the study of human population genetics. Recently integrated Alu elements (283) from the Yg6 and Yi6 subfamilies were analyzed by polymerase chain reaction (PCR), and 25 of the loci analyzed were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. These newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity. Our screening of the Alu insertion loci also resulted in the recovery of several "young" Alu elements that resided at orthologous positions in nonhuman primate genomes. Sequence analysis demonstrated these "young" Alu insertions were the products of gene conversion events of older, preexisting Alu elements or independent parallel forward insertions of older Alu elements in the same short genomic region. The level of gene conversion between Alu elements suggests that it may have an influence on the single nucleotide polymorphism within Alu elements in the genome. We have also identified two genomic deletions associated with the retroposition and insertion of Alu Y lineage elements into the human genome. This type of Alu retroposition-mediated genomic deletion is a novel source of lineage-specific evolution within primate genomes.  相似文献   

2.
Alu-PCR is a relatively simple technique that can be used to investigate genomic instability in cancer. This technique allows identification of the loss, gain or amplification of gene sequences based on the analysis of segments between two Alu elements coupled with quantitative and qualitative analyses of the profiles obtained from tumor samples, surgical margins and blood. In this work, we used Alu-PCR to identify gene alterations in ten patients with invasive ductal breast cancer. Several deletions and insertions were identified, indicating genomic instability in the tumor and adjacent normal tissue. Although not associated with specific genes, the alterations, which involved chromosomal bands 1p36.23, 1q41, 11q14.3, 13q14.2, occurred in areas of well-known genomic instability in breast and other types of cancer. These results indicate the potential usefulness of Alu-PCR in identifying altered gene sequences in breast cancer. However, caution is required in its application since the Alu primer can produce non-specific amplification.  相似文献   

3.
Alu element-mediated gene silencing   总被引:1,自引:0,他引:1  
The Alu elements are conserved approximately 300-nucleotide-long repeat sequences that belong to the SINE family of retrotransposons found abundantly in primate genomes. Pairs of inverted Alu repeats in RNA can form duplex structures that lead to hyperediting by the ADAR enzymes, and at least 333 human genes contain such repeats in their 3'-UTRs. Here, we show that a pair of inverted Alus placed within the 3'-UTR of egfp reporter mRNA strongly represses EGFP expression, whereas a single Alu has little or no effect. Importantly, the observed silencing correlates with A-to-I RNA editing, nuclear retention of the mRNA and its association with the protein p54(nrb). Further, we show that inverted Alu elements can act in a similar fashion in their natural chromosomal context to silence the adjoining gene. For example, the Nicolin 1 gene expresses multiple mRNA isoforms differing in the 3'-UTR. One isoform that contains the inverted repeat is retained in the nucleus, whereas another lacking these sequences is exported to the cytoplasm. Taken together, these results support a novel role for Alu elements in human gene regulation.  相似文献   

4.
Allelic frequency data derived from five polymorphic Alu insertion loci and five point mutation polymorphic loci were compared to determine their ability to infer phylogenetic relationships among human populations. While point mutation polymorphisms inferred a monophyletic Caucasian clade that is corroborated by other studies, these data failed to support the generally accepted monophyly of Orientals with native Americans. In addition, there is less statistical bootstrap support for the maximum-likelihood tree derived from the point mutation polymorphisms as compared to those generated from either the Alu insertion data or the combined Alu insertion+point mutation data. The Alu data and the combined Alu insertion+point mutation data inferred a monophyletic relationship among the Oriental and native American populations. The Alu insertion data and the combined Alu insertion+point mutation data also displayed two separate, well defined, tight clusters of the Caucasian and the Oriental+native American populations which was not inferred from the point mutation data. These findings indicate greater phylogenetic information contained in Alu insertion frequencies than in allelic frequencies derived from point-mutations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The aim of this study was to show how, in some particular circumstances, a physical marker can be used along with molecular markers in the research of an ancient people movement. A set of five Alu insertions was analysed in 42 subjects from a particular Tunisian group (El Hamma) that has, unlike most of the Tunisian population, a very dark skin, similar to that of sub-Saharans, and in 114 Tunisian subjects (Gabes sample) from the same governorate, but outside the group. Our results showed that the El Hamma group is genetically midway between sub-Saharan populations and North Africans, whereas the Gabes sample is clustered among North Africans. In addition, The A25 Alu insertion, considered characteristic to sub-Saharan Africans, was present in the El Hamma group at a relatively high frequency. This frequency was similar to that found in sub-Saharans from Nigeria, but significantly different from those found in the Gabes sample and in other North African populations. Our molecular results, consistent with the skin color status, suggest a sub-Saharan origin of this particular Tunisian group.  相似文献   

6.
The L1 Ta subfamily of long interspersed elements (LINEs) consists exclusively of human-specific L1 elements. Polymerase chain reaction-based screening in nonhuman primate genomes of the orthologous sites for 249 human L1 Ta elements resulted in the recovery of various types of sequence variants for approximately 12% of these loci. Sequence analysis was employed to capture the nature of the observed variation and to determine the levels of gene conversion and insertion site homoplasy associated with LINE elements. Half of the orthologous loci differed from the predicted sizes due to localized sequence variants that occurred as a result of common mutational processes in ancestral sequences, often including regions containing simple sequence repeats. Additional sequence variation included genomic deletions that occurred upon L1 insertion, as well as successive mobile element insertions that accumulated within a single locus over evolutionary time. Parallel independent mobile element insertions at orthologous loci in distinct species may introduce homoplasy into retroelement-based phylogenetic and population genetic data. We estimate the overall frequency of parallel independent insertion events at L1 insertion sites in seven different primate species to be very low (0.52%). In addition, no cases of insertion site homoplasy involved the integration of a second L1 element at any of the loci, but rather largely involved secondary insertions of Alu elements. No independent mobile element insertion events were found at orthologous loci in the human and chimpanzee genomes. Therefore, L1 insertion polymorphisms appear to be essentially homoplasy free characters well suited for the study of population genetics and phylogenetic relationships within closely related species.  相似文献   

7.
Highly repetitive DNA sequences account for more than 50% of the human genome. The L1 and Alu families harbor the most common mammalian long and short interspersed elements. An Alu element is a dimer of similar, but not identical, fragments of total size about 300 bp, and originates from the 7SL RNA gene. Each element contains a bipartite promoter for RNA polymerase III, a poly(A) tract located between the monomers, a 3"-terminal poly(A) tract, and numerous CpG islands, and is flanked by short direct repeats. Alu repeats constitute more than 10% of the human genome and are capable of retroposition. Possibly, these elements played an important part in genome evolution. Insertion of an Alu element into a functionally important genome region or other Alu-dependent alterations of gene functions cause various hereditary disorders and are probably associated with carcinogenesis. In total, 14 Alu families differing in diagnostic mutations are known. Some of these, which are present in the human genome, are polymorphic and relatively recently have been inserted into new loci. Alu copies transposed during ethnic divergence of the human population are useful markers for evolutionary genetic studies.  相似文献   

8.
9.
The Helicobacter pylori genome includes a family of outer membrane proteins (OMPs) with substantial N and C-terminal identity. To better understand their evolution, the nucleotide sequences for two members, babA and babB, were determined from a worldwide group of 23 strains. The geographic origin of each strain was found to be the major determinant of phylogenetic structure, with strains of Eastern and Western origin showing greatest divergence. For strains 96-10 (Japan) and 96-74 (USA), the 5' regions of babB are replaced with babA sequences, demonstrating that recombination occurs between the two loci. babA and babB have nearly equivalent variation in nucleotide and amino acid identity, and frequencies of synonymous and non-synonymous substitutions. Both genes have segmental conservation but within the 3' segment, substitution patterns are nearly identical. Although babA and babB 5' and midregion segment phylogenies show strong interstrain similarity, the 3' segments show strong intrastrain similarity, indicative of concerted evolution. Within these 3' segments, the lower intrastrain than interstrain frequencies of nucleotide substitutions, which are below mean background H. pylori substitution frequencies, indicate selection against intrastrain diversification. Since babA/babB gene conversions likely underlie the concerted evolution of the 3' segments, in an experimental system, we demonstrate that gene conversions can frequently (10(-3)) occur in H. pylori. That these events are recA-dependent and DNase-resistant indicates their likely cause is intragenomic recombination.  相似文献   

10.
In this work we report the genetic polymorphism of a 7-bp insertion in the 3'' untranslated region of the rabbit SRY gene. The polymorphic GAATTAA motif was found exclusively in one of the two divergent rabbit Y-chromosomal lineages, suggesting that its origin is more recent than the separation of the O. c. algirus and O. c. cuniculus Y-chromosomes. In addition, the remarkable observation of haplotypes exhibiting 0, 1 and 2 7-bp inserts in essentially all algirus populations suggests that the rabbit SRY gene is duplicated and evolving under concerted evolution.  相似文献   

11.
Alu Elements and the Human Genome   总被引:13,自引:0,他引:13  
Rowold DJ  Herrera RJ 《Genetica》2000,108(1):57-72
  相似文献   

12.
The molecular evolutionary signatures of miRNAs inform our understanding of their emergence, biogenesis, and function. The known signatures of miRNA evolution have derived mostly from the analysis of deeply conserved, canonical loci. In this study, we examine the impact of age, biogenesis pathway, and genomic arrangement on the evolutionary properties of Drosophila miRNAs. Crucial to the accuracy of our results was our curation of high-quality miRNA alignments, which included nearly 150 corrections to ortholog calls and nucleotide sequences of the global 12-way Drosophilid alignments currently available. Using these data, we studied primary sequence conservation, normalized free-energy values, and types of structure-preserving substitutions. We expand upon common miRNA evolutionary patterns that reflect fundamental features of miRNAs that are under functional selection. We observe that melanogaster-subgroup-specific miRNAs, although recently emerged and rapidly evolving, nonetheless exhibit evolutionary signatures that are similar to well-conserved miRNAs and distinct from other structured noncoding RNAs and bulk conserved non-miRNA hairpins. This provides evidence that even young miRNAs may be selected for regulatory activities. More strikingly, we observe that mirtrons and clustered miRNAs both exhibit distinct evolutionary properties relative to solo, well-conserved miRNAs, even after controlling for sequence depth. These studies highlight the previously unappreciated impact of biogenesis strategy and genomic location on the evolutionary dynamics of miRNAs, and affirm that miRNAs do not evolve as a unitary class.  相似文献   

13.
14.
The arthropod Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of protein isoforms via combinatorial splicing of numerous alternative exons encoding immunoglobulin variable domains organized into three clusters referred to as the exon 4, 6, and 9 clusters. Dscam protein diversity is important for nervous system development and immune functions. We have performed extensive phylogenetic analyses of Dscam from 20 arthropods (each containing between 46 and 96 alternative exons) to reconstruct the detailed history of exon duplication and loss events that built this remarkable system over 450 million years of evolution. Whereas the structure of the exon 4 cluster is ancient, the exon 6 and 9 clusters have undergone massive, independent expansions in each insect lineage. An analysis of nearly 2000 duplicated exons enabled detailed reconstruction of the timing, location, and boundaries of these duplication events. These data clearly show that new Dscam exons have arisen continuously throughout arthropod evolution and that this process is still occurring in the exon 6 and 9 clusters. Recently duplicated regions display boundaries corresponding to a single exon and the adjacent intron. The boundaries, homology, location, clustering, and relative frequencies of these duplication events strongly suggest that staggered homologous recombination is the major mechanism by which new Dscam exons evolve. These data provide a remarkably detailed picture of how complex gene structure evolves and reveal the molecular mechanism behind this process.  相似文献   

15.
We review trapping mechanisms in the carnivorous flowering plant family Droseraceae (order Caryophyllales). Its members are generally known to attract, capture, retain and digest prey animals (mainly arthropods) with active snap-traps (Aldrovanda, Dionaea) or with active sticky flypaper traps (Drosera) and to absorb the resulting nutrients. Recent investigations revealed how the snap-traps of Aldrovanda vesiculosa (waterwheel plant) and Dionaea muscipula (Venus’ flytrap) work mechanically and how these apparently similar devices differ as to their functional morphology and shutting mechanics. The Sundews (Drosera spp.) are generally known to possess leaves covered with glue-tentacles that both can bend toward and around stuck prey. Recently, it was shown that there exists in this genus a higher diversity of different tentacle types and trap configurations than previously known which presumably reflect adaptations to different prey spectra. Based on these recent findings, we finally comment on possible ways for intrafamiliar trap evolution.  相似文献   

16.
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.  相似文献   

17.
Ninety symbiotic rhizobial isolates from root nodules of Coronilla varia growing in the Shaanxi province of China were characterized. Combined with the results of RFLP patterns, six genotypes were defined among the rhizobial strains and they were divided into three genomic genera. These included Mesorhizobium sp., M. alhagi, M. amorphae, M. metallidurans/M. gobiense as the dominant group (86.7%), and Rhizobium yanglingense and Agrobacterium tumefaciens as the minor groups, according to analysis of the corresponding 16S rRNA, nodC and nifH genes. Five nodC types, which mainly grouped into the Mesorhizobium genus, were obtained from all the isolates examined, implying that nodC genes probably occurred from the native habitat through lateral transfer and long-term adaptation, finally evolving toward M. alhagi. Four different nifH types, displaying obvious differences compared to those of 16S rRNA and nodC, implied that possible lateral transfer of the symbiotic genes occurred between different genera. The association between soil components and the genetic diversity of the rhizobial population demonstrated that combined genotypes were positively correlated with the pH of soil samples.  相似文献   

18.
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites.  相似文献   

19.
Understanding the evolutionary history of canine sexual dimorphism is important for interpreting the developmental biology, socioecology and phylogenetic position of primates. All current evidence for extant primates indicates that canine dimorphism is achieved through bimaturism rather than via differences in rates of crown formation time. Using incremental growth lines, we charted the ontogeny of canine formation within species of Eocene Cantius, the earliest known canine-dimorphic primate, to test whether canine dimorphism via bimaturism was developmentally canalized early in primate evolution. Our results show that canine dimorphism in Cantius is achieved primarily through different rates of crown formation in males and females, not bimaturism. This is the first demonstration of rate differences resulting in canine dimorphism in any primate and therefore suggests that canine dimorphism is not developmentally homologous across Primates. The most likely interpretation is that canine dimorphism has been selected for at least twice during the course of primate evolution. The power of this approach is its ability to identify underlying developmental processes behind patterns of morphological similarity, even in long-extinct primate species.  相似文献   

20.
In this work, we examined the genetic diversity and evolution of the WAG-2 gene based on new WAG-2 alleles isolated from wheat and its relatives. Only single nucleotide polymorphisms (SNP) and no insertions and deletions (indels) were found in exon sequences of WAG-2 from different species. More SNPs and indels occurred in introns than in exons. For exons, exons+introns and introns, the nucleotide polymorphism π decreased from diploid and tetraploid genotypes to hexaploid genotypes. This finding indicated that the diversity of WAG-2 in diploids was greater than in hexaploids because of the strong selection pressure on the latter. All dn/ds ratios were < 1.0, indicating that WAG-2 belongs to a conserved gene affected by negative selection. Thirty-nine of the 57 particular SNPs and eight of the 10 indels were detected in diploid species. The degree of divergence in intron length among WAG-2 clones and phylogenetic tree topology suggested the existence of three homoeologs in the A, B or D genome of common wheat. Wheat AG-like genes were divided into WAG-1 and WAG-2 clades. The latter clade contained WAG-2, OsMADS3 and ZMM2 genes, indicating functional homoeology among them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号