首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microfluorimetry and patch-clamp experiments were performed on TRPV6-expressing HEK cells to determine whether this Ca(2+)-sensing Ca(2+) channel is constitutively active. Intact cells loaded with fura-2 had an elevated intracellular free Ca(2+) concentration ([Ca(2+)](i)), which decreased to the same level such as in non-transfected cells if external Ca(2+) was chelated by EGTA. Whole cell recordings from non-transfected HEK cells and cells expressing human TRPV6 revealed the presence of a basal inward current in both types of cells when the internal solution contained 0.1 mm EGTA and 100 nm [Ca(2+)](i) or if the cytosolic Ca(2+) buffering remained undisturbed in perforated patch-clamp experiments. If recombinantly expressed TRPV6 forms open channels, one would expect Ca(2+)-induced current inhibition, because TRPV6 is negatively regulated by internal Ca(2+). However, dialyzing solutions with high [Ca(2+)] such as 1 microm into TRPV6-expressing cells did not block the basal inward current, which was not different from the recordings from non-transfected cells. In contrast, dialyzing 0.5 mm EGTA into TRPV6-expressing cells readily activated Ca(2+) inward currents, which were undetectable in non-transfected cells. Interestingly, monovalent cations permeated the TRPV6 channels under conditions where no Ca(2+) permeation was detectable, indicating that divalent cations block TRPV6 channels from the extracellular side. Like human TRPV6, the truncated human TRPV6(Delta695-725), which lacks the C-terminal domain required for Ca(2+)-calmodulin binding, does not form constitutive active channels, whereas the human TRPV6(D542A), carrying a point mutation in the presumed pore region, does not function as a channel. In summary, no constitutive open TRPV6 channels were detected in patch-clamp experiments from transfected HEK cells. However, channel activity is highly regulated by intracellular and extracellular divalent cations.  相似文献   

2.
Glucocorticoids, such as prednisolone, are often used in clinic because of their anti-inflammatory and immunosuppressive properties. However, glucocorticoids reduce bone mineral density (BMD) as a side effect. Malabsorption of Ca2+ in the intestine is supposed to play an important role in the etiology of low BMD. To elucidate the mechanism of glucocorticoid-induced Ca2+ malabsorption, the present study investigated the effect of prednisolone on the expression and activity of proteins responsible for active intestinal Ca2+ absorption including the epithelial Ca2+ channel TRPV6, calbindin-D(9K), and the plasma membrane ATPase PMCA1b. Therefore, C57BL/6 mice received 10 mg/kg body wt prednisolone daily by oral gavage for 7 days and were compared with control mice receiving vehicle only. An in vivo 45Ca2+ absorption assay indicated that intestinal Ca2+ absorption was diminished after prednisolone treatment. We showed decreased duodenal TRPV6 and calbindin-D(9K) mRNA and protein abundance in prednisolone-treated compared with control mice, whereas PMCA1b mRNA levels were not altered. Importantly, detailed expression studies demonstrated that in mice these Ca2+ transport proteins are predominantly localized in the first 2 cm of the duodenum. Furthermore, serum Ca2+ and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] concentrations remained unchanged by prednisolone treatment. In conclusion, these data suggest that prednisolone reduces the intestinal Ca2+ absorption capacity through diminished duodenal expression of the active Ca2+ transporters TRPV6 and calbindin-D(9K) independent of systemic 1,25(OH)2D3.  相似文献   

3.
The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels.  相似文献   

4.
The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits. Here we demonstrate that TRPV6 interacts with the NH(2)-terminal domain of RGS2 in a Ca(2+)-independent fashion and that overexpression of RGS2 reduces the Na(+) and Ca(2+) current of TRPV6 but not that of TRPV5-transfected human embryonic kidney 293 (HEK293) cells. In contrast, overexpression of the deletion mutant DeltaN-RGS2, lacking the NH(2)-terminal domain of RGS2, in TRPV6-expressing HEK293 cells did not show this inhibition. Furthermore, cell surface biotinylation indicated that the inhibitory effect of RGS2 on TRPV6 activity is not mediated by differences in trafficking or retrieval of TRPV6 from the plasma membrane. This effect probably results from the direct interaction between RGS2 and TRPV6, affecting the gating properties of the channel. Finally, the scaffolding protein spinophilin, shown to recruit RGS2 and regulate GPCR-signaling via G(alpha), did not affect RGS2 binding and electrophysiological properties of TRPV6, indicating a GPCR-independent mechanism of TRPV6 regulation by RGS2.  相似文献   

5.
The esophageal epithelium has sensory properties that enable it to sustain normal barrier function. Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable channel that is activated by extracellular hypotonicity, polyunsaturated fatty acids, phorbol esters, and elevated temperature. We found that TRPV4 is expressed in both human esophageal tissue and in HET-1A cells, a human esophageal epithelial cell line. Specific activation of TRPV4 by the phorbol ester 4α-phorbol 12,13-didecanoate (4α-PDD) increased intracellular Ca(2+) in a subset of HET-1A cells. Elevated temperature strongly potentiated this effect at low concentrations of 4α-PDD, and all of the responses were inhibited by the TRPV antagonist ruthenium red. TRPV4 activation differentially affected cell proliferation and cell viability; HET-1A cell proliferation was increased by 1 μM 4α-PDD, whereas higher concentrations (10 μM and 30 μM) significantly decreased cell viability. Transient TRPV4 activation triggered ATP release in a concentration-dependent manner via gap-junction hemichannels, including pannexin 1 and connexin 43. Furthermore, TRPV4 activation for 24 h did not increase the production of interleukin 8 (IL-8) but reduced IL-1β-induced IL-8 production. Small-interference RNA targeted to TRPV4 significantly attenuated all of the 4α-PDD-induced responses in HET-1A cells. Collectively, these findings suggest that TRPV4 is a novel regulator of Ca(2+)-dependent signaling pathways linked to cell proliferation, cell survival, ATP release, and IL-8 production in human esophageal epithelial cells.  相似文献   

6.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

7.
The small GTPase Rem is a potent negative regulator of high voltage-activated Ca(2+) channels and a known interacting partner for Ca(2+) channel accessory beta subunits. The mechanism for Rem-mediated channel inhibition remains controversial, although it has been proposed that Ca(V)beta association is required. Previous work has shown that a C-terminal truncation of Rem (Rem-(1-265)) displays reduced in vivo binding to membrane-localized beta 2a and lacks channel regulatory function. In this paper, we describe a role for the Rem C terminus in plasma membrane localization through association with phosphatidylinositol lipids. Moreover, Rem-(1-265) can associate with beta 2a in vitro and beta 1b in vivo, suggesting that the C terminus does not directly participate in Ca(V)beta association. Despite demonstrated beta 1b binding, Rem-(1-265) was not capable of regulating a Ca(V)1.2-beta 1b channel complex, indicating that beta subunit binding is not sufficient for channel regulation. However, fusion of the CAAX domain from K-Ras4B or H-Ras to the Rem-(1-265) C terminus restored membrane localization and Ca(2+) channel regulation, suggesting that beta binding and membrane localization are independent events required for channel inhibition.  相似文献   

8.
Ca2+ regulates keratinocyte differentiation by increasing intracellular Ca2+ levels. Ca2+-ATPase in the Ca2+-induced differentiation of human keratinocytes was investigated by measuring Ca2-ATPase mRNA, protein, and activity levels. Human keratinocytes were grown in Keratinocyte Growth Medium containing 0.03, 0.1, or 1.2 mM Ca2+ and assayed on days 2, 5, 7, 14, and 21. Ca2+-ATPase mRNA levels were found to be modestly increased in 5-, 7-, and 14-day cultured cells as compared with 2-day cultured cells, but levels fell below that of the 2-day cultured cells in the 21-day cultured cells. The Ca2+-ATPase mRNA levels were not affected by Ca2+ levels. A 135-kDa protein in human keratinocytes cross reacted with the monoclonal antibody against human erythrocyte Ca2+-ATPase. The level of this protein was decreased by Ca2+ and lost during differentiation, in parallel with the loss of enzymatic activity. Ca2+ influx of postconfluent 1.2 mM Ca2-grown cells was higher than that of cells grown in lower Ca2+ concentrations. Ca2+ efflux from postconfluent cells grown in 0.03 mM Ca2+ was less than that from cells grown in stronger Ca2+ concentrations. These results suggest that the loss of the plasma membrane Ca2+-ATPase with time in culture contributes to the rise in intracelluar Ca2+, thus promoting keratinocyte differentiation. J. Cell. Physiol. 172:146–154, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Life expectancy for patients suffering from prostate cancer is inversely correlated with the degree of extraprostatic metastasis. In order to find pharmacological tools to treat this aggressive growth it is important to define targets whose expression not only correlates with the malignancy of the cancerous cells, but that are also amenable to pharmacological intervention. In this review, we would like to focus on the potential role of a distinct class of ion channels that may be involved in this process.  相似文献   

10.
The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry/signalling pathway that is sensitive to 17beta-estradiol.  相似文献   

11.
R C Hardie  B Minke 《Neuron》1992,8(4):643-651
Invertebrate phototransduction is an important model system for studying the ubiquitous inositol-lipid signaling system. In the transient receptor potential (trp) mutant, one of the most intensively studied transduction mutants of Drosophila, the light response quickly declines to baseline during prolonged intense light. Using whole-cell recordings from Drosophila photoreceptors, we show that the wild-type response is mediated by at least two functionally distinct classes of light-sensitive channels and that both the trp mutation and a Ca2+ channel blocker (La3+) selectively abolish one class of channel with high Ca2+ permeability. Evidence is also presented that Ca2+ is necessary for excitation and that Ca2+ depletion mimics the trp phenotype. We conclude that the recently sequenced trp protein represents a class of light-sensitive channel required for inositide-mediated Ca2+ entry and suggest that this process is necessary for maintained excitation during intense illumination in fly photoreceptors.  相似文献   

12.
TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca2 + reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane phospholipid PIP2, protons, and divalent ions Ca2 + and Mg2 +. Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 min. Fluid flow stimulated TRPV5 and 6-mediated Ca2 + entry and increased intracellular Ca2 + concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3 +. In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel. These results reveal a new mechanism for the regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K+ secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria.  相似文献   

13.
Store-mediated Ca(2+) entry (SMCE), which is rapidly activated by depletion of the intracellular Ca(2+) stores, is a major mechanism for Ca(2+) influx. Several studies have involved tyrosine kinases in the activation of SMCE, such as pp60(src), although at present those involved in the early activation steps are unknown. Here we report the involvement of Bruton's tyrosine kinase (Btk) in the early stages of SMCE in human platelets. Cell treatment with thrombin or thapsigargin (TG) plus ionomycin (Iono) results in rapid activation of Btk, which was independent of rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) but dependent on H(2)O(2) generation. Platelet treatment with Btk inhibitors, LFM-A13 or terreic acid, significantly reduced TG+Iono- and thrombin-evoked SMCE. Btk was rapidly activated by addition of low concentrations of H(2)O(2), whose effect on Ca(2+) entry was prevented by Btk inhibitors. Our results indicate that pp60(src) and Btk co-immunoprecipitate after platelet stimulation with TG+Iono, thrombin or H(2)O(2). In addition, we have found that LFM-A13 impaired actin filament reorganization after store depletion and agonist-induced activation of pp60(src), while the inhibitor of pp60(src), a protein that requires actin reorganization for its activation, did not modify Btk activation, suggesting that Btk is upstream of pp60(src). We propose a role for Btk in the early steps of activation of SMCE in human platelets.  相似文献   

14.
The activation mechanism of the recently cloned human transient receptor potential vanilloid type 6 (TRPV6) channel, originally termed Ca(2+) transporter-like protein and Ca(2+) transporter type 1, was investigated in whole-cell patch-clamp experiments using transiently transfected human embryonic kidney and rat basophilic leukemia cells. The TRPV6-mediated currents are highly Ca(2+)-selective, show a strong inward rectification, and reverse at positive potentials, which is similar to store-operated Ca(2+) entry in electrically nonexcitable cells. The gating of TRPV6 channels is strongly dependent on the cytosolic free Ca(2+) concentration; lowering the intracellular free Ca(2+) concentration results in Ca(2+) influx, and current amplitude correlates with the intracellular EGTA or BAPTA concentration. This is also the case for TRPV6-mediated currents in the absence of extracellular divalent cations; compared with endogenous currents in nontransfected rat basophilic leukemia cells, these TRPV6-mediated monovalent currents reveal differences in reversal potential, inward rectification, and slope at very negative potentials. Release of stored Ca(2+) by inositol 1,4,5-trisphosphate and/or the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin appears not to be involved in TRPV6 channel gating in both cell lines but, in rat basophilic leukemia cells, readily activates the endogenous Ca(2+) release-activated Ca(2+) current. In conclusion, TRPV6, expressed in human embryonic kidney cells and in rat basophilic leukemia cells, functions as a Ca(2+)-sensing Ca(2+) channel independently of procedures known to deplete Ca(2+) stores.  相似文献   

15.
In HEK293 cells, transfected with the Ca2+ channel protein TRPV6, Ca2+ influx is increased and TRPV6 is tyrosine phosphorylated following addition of the tyrosine phosphatase inhibitor N,N-dimethyl-hydroxamido hydroxovanadate to cells. This effect of DMHV is enhanced by co-transfection of cells with the tyrosine kinase Src and the tyrosine phosphatase 1B. It is abolished when cells had been treated with PP1, an inhibitor of Src family tyrosine kinases. PTP1B interacts with the N-terminal domain of TRPV6 within a region of amino acids 1-191 as shown by co-immunoprecipitation, bimolecular fluorescence complementation and the yeast 2-hybrid system. Point mutation of both tyrosines 161 and 162 in the TRPV6 protein abolishes the DMHV-effect on Ca2+ influx and tyrosine phosphorylation by Src. Single mutations of Y161 or Y162 shows that each of both tyrosines alone is sufficient for the DMHV-effect. We conclude that phosphorylation/dephosphorylation of tyrosines in position 161 and 162 is essential for regulation of Ca2+ influx through TRPV6 Ca2+ channels in HEK293 cells.  相似文献   

16.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

17.
Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.  相似文献   

18.
The physiological role and activation mechanism for most proteins of the transient receptor potential (TRP) family are unknown. This is also the case for the highly Ca(2+) selective transient receptor potential vanilloid type 6 (TRPV6) channel. Patch clamp experiments were performed on transiently transfected human embryonic kidney (HEK) cells to address this issue. Currents were recorded under various conditions of intracellular Ca(2+) buffering and monitored at the same voltage throughout. No TRPV6-mediated Ca(2+) entry was detected under in vivo Ca(2+) buffering conditions at a slightly negative holding potential; however, moderate depolarization resulted in current activation. Very similar results were obtained with different Ca(2+) chelators, either EGTA or BAPTA dialyzing the cell. TRPV6 channel activity showed a negative correlation with the intracellular free Ca(2+) concentration ([Ca(2+)](i)) and was modulated by the membrane potential: Hyperpolarization decreases and depolarization increases TRPV6-mediated currents. Monovalent ions permeated TRPV6 channels in the absence of extracellular divalent cations. These currents were resistant to changes in the holding potential while the negative correlation to the [Ca(2+)](i) was conserved, indicating that the voltage-dependent current changes depend on blocking and unblocking the charge carrier Ca(2+) within the pore. In summary, these results suggest that the voltage dependence of TRPV6-mediated Ca(2+) influx is of physiological importance since it occurs at cytosolic Ca(2+) buffering and takes place within a physiologically relevant membrane potential range.  相似文献   

19.
Phospholipase C-gamma is required for agonist-induced Ca2+ entry   总被引:2,自引:0,他引:2  
We report here that PLC-gamma isoforms are required for agonist-induced Ca2+ entry (ACE). Overexpressed wild-type PLC-gamma1 or a lipase-inactive mutant PLC-gamma1 each augmented ACE in PC12 cells, while a deletion mutant lacking the region containing the SH3 domain of PLC-gamma1 was ineffective. RNA interference to deplete either PLC-gamma1 or PLC-gamma2 in PC12 and A7r5 cells inhibited ACE. In DT40 B lymphocytes expressing only PLC-gamma2, overexpressed muscarinic M5 receptors (M5R) activated ACE. Using DT40 PLC-gamma2 knockout cells, M5R stimulation of ER Ca2+ store release was unaffected, but ACE was abolished. Normal ACE was restored by transient expression of PLC-gamma2 or a lipase-inactive PLC-gamma2 mutant. The results indicate a lipase-independent role of PLC-gamma in the physiological agonist-induced activation of Ca2+ entry.  相似文献   

20.
The transient receptor potential ankyrin 1 (TRPA1) channel is a Ca(2+)-permeable cation channel whose activation results from a complex synergy between distinct activation sites, one of which is especially important for determining its sensitivity to chemical, voltage and cold stimuli. From the cytoplasmic side, TRPA1 is critically regulated by Ca(2+) ions, and this mechanism represents a self-modulating feedback loop that first augments and then inhibits the initial activation. We investigated the contribution of the cluster of acidic residues in the distal C terminus of TRPA1 in these processes using mutagenesis, whole cell electrophysiology, and molecular dynamics simulations and found that the neutralization of four conserved residues, namely Glu(1077) and Asp(1080)-Asp(1082) in human TRPA1, had strong effects on the Ca(2+)- and voltage-dependent potentiation and/or inactivation of agonist-induced responses. The surprising finding was that truncation of the C terminus by only 20 residues selectively slowed down the Ca(2+)-dependent inactivation 2.9-fold without affecting other functional parameters. Our findings identify the conserved acidic motif in the C terminus that is actively involved in TRPA1 regulation by Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号