首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

3.
Novel bicyclo nucleosides, 2'-O,4'-C-ethylene nucleosides and 2'-O,4'-C-propylene nucleosides, were synthesized as building blocks for antisense oligonucleotides to further optimize the 2'-O,4'-C-methylene-linkage of bridged nucleic acids (2',4'-BNA) or locked nucleic acids (LNA). Both the 2'-O,4'-C-ethylene- and propylene-linkage within these nucleosides restrict the sugar puckering to the N-conformation of RNA as do 2',4'-BNA/LNA. Furthermore, ethylene-bridged nucleic acids (ENA) having 2'-O,4'-C-ethylene nucleosides had considerably increased the affinity to complementary RNA, and were as high as that of 2',4'-BNA/LNA (DeltaT(m)=+3 approximately 5 degrees C per modification). On the other hand, addition of 2'-O,4'-C-propylene modifications in oligonucleotides led to a decrease in the affinity to complementary RNA. As for the stability against nucleases, incorporation of one 2'-O,4'-C-ethylene or one 2'-O,4'-C-propylene nucleoside into oligonucleotides considerably increased their resistance against exonucleases to an extent greater than 2',4'-BNA/LNA. These results indicate that ENA is more suitable as an antisense oligonucleotide and is expected to have better antisense activity than 2',4'-BNA/LNA.  相似文献   

4.
2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) monomers bearing novel unnatural nucleobases, 4-(3-benzamidophenyl)-2-pyridone and 2-(N-methylbenzamido)thiazole, were synthesized and successfully incorporated into oligonucleotides. UV melting experiments showed that the corresponding oligonucleotide derivatives formed stable triplexes with dsDNA targets even in the presence of a T.A interruption.  相似文献   

5.
We analyzed the effect of 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2',4'-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2',4'-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

6.
Due to instability of pyrimidine motif triplex DNA at physiological pH, triplex stabilization at physiological pH is crucial in improving its potential in various triplex formation-based strategies in vivo, such as regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis. To this end, we investigated the effect of our previously reported chemical modification, 2'-O,4'-C-aminomethylene bridged nucleic acid (2',4'- BNA(NC)) modification, introduced into interrupted and continuous positions of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at physiological pH. The interrupted 2',4'-BNA(NC) modifications of TFO increased the binding constant of the triplex formation at physiological pH by more than 10-fold, and significantly increased the nuclease resistance of TFO. On the other hand, the continuous 2',4'-BNA(NC) modification of TFO showed lower ability to promote the triplex formation at physiological pH than the interrupted 2',4'-BNA(NC) modifications of TFO, and did not significantly change the nuclease resistance of TFO. Selection of the interruptedly 2',4'-BNA(NC)-modified positions in TFO was more favorable for achieving the higher binding affinity of the pyrimidine motif triplex formation at physiological pH and the higher nuclease resistance of TFO than that of the continuously 2',4'-BNA(NC)-modified positions in TFO. We conclude that the interrupted 2',4'-BNA(NC) modification of TFO could be a key chemical modification to enhance pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition, and may eventually lead to progress in various triplex formation-based strategies in vivo.  相似文献   

7.
An oligonucleotide P3'-->N5' phosphoramidate (5'-amino-DNA) attracts much attention because of its potential for application to DNA sequencing; however, its ability to hybridize with complementary strands is low. To overcome this drawback of the 5-amino-DNA, we have designed and successfully synthesized a novel nucleic acid analogue having a P3'-->N5' phosphoramidate linkage and a constrained sugar moiety, 5'-amino-3'-C,5'-N-methylene bridged nucleic acid (5'-amino-3',5'-BNA). The binding affinity of the 5'-amino-3',5'-BNA towards complementary DNA and RNA strands was investigated by UV melting experiments. The melting temperature (Tm) of the duplex comprising the 5'-amino-3',5'-BNA and its complementary strand was much higher than that of the duplex containing the corresponding 5-amino-DNA.  相似文献   

8.
Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in an artificial control of gene expression in vivo. Stabilization of the pyrimidine motif triplex at physiological pH is, therefore, crucial in improving its therapeutic potential. To this end, we have investigated the thermodynamic and kinetic effects of our previously reported chemical modification, 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO), on pyrimidine motif triplex formation at physiological pH. The thermodynamic analyses indicated that the 2',4'-BNA modification of TFO increased the binding constant of the pyrimidine motif triplex formation at neutral pH by approximately 20 times. The number and position of the 2',4'-BNA modification introduced into the TFO did not significantly affect the magnitude of the increase in the binding constant. The consideration of the observed thermodynamic parameters suggested that the increased rigidity itself of the 2',4'-BNA-modified TFO in the free state relative to the unmodified TFO may enable the significant increase in the binding constant at neutral pH. Kinetic data demonstrated that the observed increase in the binding constant at neutral pH by the 2',4'-BNA modification of TFO resulted from the considerable decrease in the dissociation rate constant. Our results certainly support the idea that the 2',4'-BNA modification of TFO could be a key chemical modification and may eventually lead to progress in therapeutic applications of the antigene strategy in vivo.  相似文献   

9.
We newly designed and synthesized a 2'-deoxy type trans-3',4'-bridged nucleic acid (trans-3',4'-BNA) analogues bearing a 4,7-dioxabicyclo[4.3.0]nonane structure. The synthesis of the trans-3',4'-BNA was carried out successfully from thymidine over 21 steps. The structure of trans-3',4'-BNA was confirmed by x-ray crystallographic analysis, indicating that the furanose ring has a typical S-type conformation with C(3')-exo puckering.  相似文献   

10.
The P-N bond in oligonucleotide P3' --> N5' phosphoramidates (5'-amino-DNA) is known to be chemoselectively cleaved under mild acidic conditions. We prepared homopyrimidine oligonucleotides containing 5'-amino-5'-deoxythymidine (5'-amino-DNA thymine monomer) or its conformationally locked congener, 5'-amino-2',4'-BNA thymine monomer, at midpoint of the sequence. The effect of triplex formation with homopurineohomopyrimidine dsDNA targets on acid-mediated hydrolysis of the P3' --> N5' phosphoramidate linkage was evaluated. Very interestingly, it was found that the triplex formation significantly accelerates the P-N bond cleavage.  相似文献   

11.
Oligonucleotides modified with 2 ',4 '-BNA(NC) (N-H)/(N-Me) monomers exhibited excellent hybridizing and nuclease resistance properties. Duplex and triplex thermal stabilities were greatly enhanced by incorporating 2',4'-BNA(NC) (N-H) and (N-Me) monomers and nuclease resistance was tremendously higher than that of natural oligonucleotide.  相似文献   

12.
To develop antisense oligonucleotides, novel nucleosides, 2'-O,4'-C-ethylene nucleosides and their corresponding phosphoramidites, were synthesized as building blocks. The 1H NMR analysis showed that the 2'-O,4'-C-ethylene linkage of these nucleosides restricts the sugar puckering to the N-conformation as well as the linkage of 2'-O,4'-C-methylene nucleosides which are known as bridged nucleic acids (BNA) or locked nucleic acids (LNA). The ethylene-bridged nucleic acids (ENA) showed a high binding affinity for the complementary RNA strand (DeltaT(m)=+5.2 degrees C/modification) and were more nuclease-resistant than natural DNA and BNA/LNA. These results indicate that ENA have better properties as antisense oligonucleotides than BNA/LNA.  相似文献   

13.
2′-O,4′-C-methylene-linked ribonucleotide derivatives, named LNA (locked nucleic acid) and BNA (bridged nucleic acid) are nucleic acid analogoues that have shown high-affinity recognition of DNA and RNA, and the employment of LNA oligomers for antisense activity, gene regulation and nucleic acid diagnostics seems promising. Here we show kinetic and thermodynamic results on the interaction of a series of 10 bases long LNA–DNA mixmers, gabmers as well as full length LNA’s with the complementary DNA, RNA and LNA oligonucleotides in the presence and absence of 10 mM Mg2+- ions. Our results show no significant differences in the reaction thermodynamics and kinetics between the LNA species, only a tendency to stronger duplex formation with the gabmer and mixmer. Introduction of a few LNA’s thus may be a better strategy, than using full length LNA’s to obtain an oligonucleotide that markedly increases the strength of duplexes formed with the complementary DNA and RNA.  相似文献   

14.
Locked nucleic acid (LNA) analogues with 2',4'-bridged sugars show promise in antisense applications. S-5'-Me-LNA has high RNA affinity, and modified oligonucleotides show weakened immune stimulation in vivo. Conversely, an R-5'-methyl group dramatically lowers RNA affinity. To test the effects of S- and R-6'-methyl groups on 3'-fluoro hexitol nucleic acid (FHNA) stability, we synthesized S- and R-6'-Me-FHNA thymidine and incorporated them into oligo-2'-deoxynucleotides. As with LNA, S-6'-Me is stabilizing whereas R-6'-Me is destabilizing. Crystal structures of 6'-Me-FHNA-modified DNAs explain the divergent consequences for stability and suggest convergent origins of these effects by S- and R-6'-Me (FHNA) [-5'-Me (LNA and RNA)] substituents.  相似文献   

15.
McTigue PM  Peterson RJ  Kahn JD 《Biochemistry》2004,43(18):5388-5405
The design of modified nucleic acid probes, primers, and therapeutics is improved by considering their thermodynamics. Locked nucleic acid (LNA) is one of the most useful modified backbones, with incorporation of a single LNA providing a substantial increase in duplex stability. In this work, the hybridization DeltaH(o), DeltaS(o), and melting temperature (T(M)) were measured from absorbance melting curves for 100 duplex oligonucleotides with single internal LNA nucleotides on one strand, and the results provided DeltaDeltaH(o), DeltaDeltaS(o), DeltaDelta, and DeltaT(M) relative to reference DNA oligonucleotides. LNA pyrimidines contribute more stability than purines, especially A(L), but there is substantial context dependence for each LNA base. Both the 5' and 3' neighbors must be considered in predicting the effect of an LNA incorporation, with purine neighbors providing more stability. Enthalpy-entropy compensation in DeltaDeltaH(o) and DeltaDeltaS(o) is observed across the set of sequences, suggesting that LNA can stabilize the duplex by either preorganization or improved stacking, but not both simultaneously. Singular value decomposition analysis provides predictive sequence-dependent rules for hybridization of singly LNA-substituted DNA oligonucleotides to their all-DNA complements. The results are provided as sets of DeltaDeltaH(o), DeltaDeltaS(o), and DeltaDelta parameters for all 32 of the possible nearest neighbors for LNA+DNA:DNA hybridization (5' MX(L) and 5' X(L)N, where M, N, and X = A, C, G, or T and X(L) represents LNA). The parameters are applicable within the standard thermodynamic prediction algorithms. They provide T(M) estimates accurate to within 2 degrees C for LNA-containing oligonucleotides, which is significantly better accuracy than previously available.  相似文献   

16.
Antisense oligonucleotides (AONs) that specifically target the genes of rat organic anion transporting polypeptide (oatp) subtypes were selected by using antisense in vitro selection (AIVS) and a conventional gene alignment program (GAP). When we incorporated several of our original 2'-O,4'-C-ethylene-bridged nucleic acid (ENA) residues into AONs, which were designed as gapmers containing a series of 2'-deoxynucleotides in the center, at both the 3' and 5' ends, the inhibitory activity of these oatp AONs was enhanced and their inhibition was mediated by RNase H cleavage. Moreover, these ENA AONs did not lose their oatp selectivity. These strategies of using AIVS and GAP to select AONs followed by incorporation of ENA residues were effective for synthesizing oatp subtype-specific AONs.  相似文献   

17.
Oligonucleotide arrays can be used for the analysis of microbial nucleic acid. The addition of high numbers of dTTP to the 3' ends of oligonucleotides using terminal transferase has been shown to facilitate membrane binding. This paper demonstrates low numbers of thymine bases added to the 3' end of oligonucleotides during synthesis can improve hybridisation signal intensity where the signal seen with the unmodified oligonucleotides is poor. Thus, the addition of variable numbers of thymine bases to different oligonucleotides allows the production of oligonucleotide arrays producing strong interpretable hybridisation signals.  相似文献   

18.
Poliovirus protein 3AB displayed nucleic acid chaperone activity in promoting the hybridization of complementary nucleic acids and destabilizing secondary structure. Hybridization reactions at 30 degrees C between 20- and 40-nucleotide RNA oligonucleotides and 179- or 765-nucleotide RNAs that contained a complementary region were greatly enhanced in the presence of 3AB. The effect was nonspecific as reactions between DNA oligonucleotides and RNA or DNA templates were also enhanced. Reactions were optimal with 1 mM MgCl(2) and 20 mM KCl. Analysis of the reactions with various 3AB and template concentrations indicated that enhancement required a critical amount of 3AB that increased as the concentration of nucleic acid increased. This was consistent with a requirement for 3AB to "coat" the nucleic acids for enhancement. The helix-destabilizing activity of 3AB was tested in an assay with two 42-nucleotide completely complementary DNAs. Each complement formed a strong stem-loop (DeltaG = -7.2 kcal/mol) that required unwinding for hybridization to occur. DNAs were modified at the 3' or 5' end with fluorescent probes such that hybridization resulted in quenching of the fluorescent signal. Under optimal conditions at 30 degrees C, 3AB stimulated hybridization in a concentration-dependent manner, as did human immunodeficiency virus nucleocapsid protein, an established chaperone. The results are discussed with respect to the role of 3AB in viral replication and recombination.  相似文献   

19.
The affinities and location of oligonucleotides bound to intact and truncated bacteriophage T4 gene 32 protein have been elucidated by two independent and sensitive methods. The nucleic acid binding site is located within the core domain of 32 protein, residues 22-253. Oligonucleotides protect the core domain against proteolysis catalyzed by mammalian endoproteinase Arg-C. Of the three cleavage sites, Arg111, within the internal "LAST" ((Lys/Arg)3(Ser/Thr)2) motif, is selectively protected. We have previously suggested that these LAST residues, Lys-Arg-Lys-Thr-Ser, residues 110-114, are involved in nucleic acid binding, and our results are also consistent with crystallographic studies. The inhibitory effects of oligonucleotides on the kinetics of core domain proteolysis were used to quantify binding affinities. In addition, affinities of oligonucleotides for both core domain and intact protein were obtained from their effect on the Tm-depressing activities of these proteins. For both core and intact protein, the degree of affinity increases with oligonucleotide length. The presence of a 5' terminal phosphate increases the affinity two- to fourfold. Placement of methylphosphonodiester (uncharged) linkages at alternating linkages vastly lowers binding affinity for the intact protein and core domain. We conclude that at least two and likely three adjacent phosphodiester linkages are a minimal requirement for binding, further defining the electrostatic component of the interaction. The length-dependence of binding affinity suggests that additional interactions, both ionic and non-ionic, likely occur with longer oligonucleotides.  相似文献   

20.
We find that Type II DNA polymerases can catalyze pyrophosphorolysis, the reverse reaction of DNA polymerization. This property is applied utilizing pyrophosphorolysis-activated polymerization (PAP), a method of nucleic acid amplification using serial coupling of pyrophosphorolysis and polymerization. PAP can be used for ultrarare allele detection (detection of minimal residual disease and cancer risk assessment through measurement of mutation load) and for microarray-based scanning for unknown mutations. Herein, we show that Type II DNA polymerases efficiently catalyze template-dependent pyrophosphorolysis to activate oligonucleotides blocked at their 3' termini with acyclonucleotides in which a 2-hydroxyethoxymethyl group substitutes for the 2'-deoxyribofuranosyl sugar. Type II archeon DNA polymerases Vent (exo-) and Pfu (exo-) can be utilized for PAP or a bidirectional form of PAP with acyclonucleotide-blocked oligonucleotides, but not with dideoxynucleotide-blocked oligonucleotides. In contrast, a Type I DNA polymerase, TaqFS, can utilize either acyclonucleotide-blocked or dideoxynucleotide-blocked oligonucleotides. These findings expand the potential of nascent PAP technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号