首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm protein 17 is expressed in human somatic ciliated epithelia.   总被引:4,自引:0,他引:4  
It was once believed that sperm protein 17 (Sp17) was expressed exclusively in the testis and that its sole function was to bind to the oocyte during fertilization. However, immunohistochemistry of the human respiratory airways and reproductive systems show that it is abundant in ciliated cells but not in human cells with stereocilia and microvilli. The high degree of sequence conservation throughout its N-terminal half, and the presence of an A-kinase anchoring protein (AKAP)-binding motif within this region, suggest that Sp17 plays a regulatory role in a PKA-independent AKAP complex in both male germinal and ciliated somatic cells.  相似文献   

2.
We identified three splice variants of hSK1 whose C-terminal structures are determined by the independent deletion of two contiguous nucleotide sequences. The upstream sequence extends 25 bases in length, is initiated by a donor splice site within exon 8, and terminates at the end of the exon. The downstream sequence consists of nine bases that compose exon 9. When the upstream sequence (hSK1(-)(25b)) or both sequences (hSK1(-)(34b)) are deleted, truncated proteins are encoded in which the terminal 118 amino acids are absent. The binding of calmodulin to these variants is diminished, particularly in the absence of Ca2+ ions. The first 20 amino acids of the segment deleted from hSK1(-)(25b) and hSK1(-)(34b) contain a 1-8-14 Ca2+ calmodulin binding motif, and synthetic oligopeptides based on this region bind calmodulin better in the presence than absence of Ca2+ ions. When the downstream sequence (hSK1(-)(9b)) alone is deleted, only the three amino acids A452, Q453, and K454 are removed, and calmodulin binding is not reduced. On the basis of the relative abundance of mRNA encoding each of the four isoforms, the full-length variant appears to account for most hSK1 in the human hippocampus, while hSK1(-)(34b) predominates in reticulocytes, and hSK1(-)(9b) is especially abundant in human erythroleukemia cells in culture. We conclude that the binding of calmodulin by hSK1 can be modulated through alternative splicing.  相似文献   

3.
《Gene》1997,184(1):39-43
GAP (GTPase-activating protein), a negative regulator of the receptor tyrosine kinase signal transduction pathway, exists as two isoforms: a ubiquitous, p120 form and a primate placenta-specific p100 form lacking the N-terminal hydrophobic domain. The cDNA species encoding p120 and p100 GAP are identical except that p100 GAP cDNA contains a 65-bp insert not present in p120 cDNA. The purpose of this study was to locate the 65-bp insert in the genomic GAP sequence, thereby determining the mechanism by which alternate splicing produces the two mRNA species. It was found that the 65-bp insert is located just 3′ to the sequence encoding the hydrophobic domain, indicating that the p100 form of GAP results from utilization of an alternate splice donor site. In addition, the sequence encoding the hydrophobic domain was found to be contained within a single large exon. The intron separating this exon from the exon encoding the 5′-portion of the SH2-N domain was determined to be at least 40 kb in length. Finally, it was found that the sequence encoding the SH2-N domain contains an intron 1006 bp long, and the sequence of this intron has been deduced. It is anticipated that the data presented in this paper will provide the basis for elucidating RNA processing mechanisms responsible for preferential expression of p100 GAP in the human placenta.  相似文献   

4.
The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found to be compound heterozygotes for mutations in the IR gene. The maternal allele was alternatively spliced in exon 17 due to a point mutation in the -1 donor splice site of the exon. The abnormal skipping of exon 17 shifts the amino acid reading frame and leads to a truncated IR, missing the entire tyrosine kinase domain. In the correct spliced variant, the point mutation is silent and results in a normally translated IR. The paternal allele carries a missense mutation in the tyrosine kinase domain. All three cDNA variants were present in the lymphocytes of the patients. Purified IR from 293 cells overexpressing either of the two mutated receptors lacked basal or stimulated IR beta-subunit autophosphorylation. A third brother who inherited both normal alleles has an normal muscle phenotype and insulin sensitivity, suggesting a direct linkage of these IR mutations with the CFTDM phenotype.  相似文献   

5.
IRS-1 (insulin receptor substrate 1) is a principal insulin receptor substrate that undergoes tyrosine phosphorylation during insulin stimulation. It contains over 20 potential tyrosine phosphorylation sites, and we suspect that multiple insulin signals are enabled when the activated insulin receptor kinase phosphorylates several of them. Tyrosine-phosphorylated IRS-1 binds specifically to various cellular proteins containing Src homology 2 (SH2) domains (SH2 proteins). We identified some of the tyrosine residues of IRS-1 that undergo insulin-stimulated phosphorylation by the purified insulin receptor and in intact cells during insulin stimulation. Automated sequencing and manual radiosequencing revealed the phosphorylation of tyrosine residues 460, 608, 628, 895, 939, 987, 1172, and 1222; additional sites remain to be identified. Immobilized SH2 domains from the 85-kDa regulatory subunit (p85 alpha) of the phosphatidylinositol 3'-kinase bind preferentially to tryptic phosphopeptides containing Tyr(P)-608 and Tyr(P)-939. By contrast, the SH2 domain in GRB2 and the amino-terminal SH2 domain in SHPTP2 (Syp) specifically bind to Tyr(P)-895 and Tyr(P)-1172, respectively. These results confirm the p85 alpha recognizes YMXM motifs and suggest that GRB2 prefers a phosphorylated YVNI motif, whereas SHPTP2 (Syp) binds to a phosphorylated YIDL motif. These results extend the notion that IRS-1 is a multisite docking protein that engages various downstream regulatory elements during insulin signal transmission.  相似文献   

6.
To study the force-velocity characteristics of human knee-hip extension movement, a dynamometer, in which force was controlled by a servo system, was developed. Seated subjects pressed either bilaterally or unilaterally a force plate, a horizontal position of which was servo-controlled so as to equalize the measured force and a force command generated by a computer at a time resolution of 2 ms (force clamp). The force command was based on the relation between maximum isometric force and foot position within the range between 70% and 90% of "leg length" (LL: longitudinal distance between the sole of the foot and the hip joint), so that the same force relative to the maximum isometric force was consistently applied regardless of the foot position. By regulating the force according to this function, the force-velocity relation was determined. The force-velocity relation obtained was described by a linear function (n=17, r=-0.986 for 80% LL, r=-0.968 for 85% LL) within a range of force between 0.1 and 0.8F(0) (maximum isometric force). The maximum force extrapolated from the linear regression (F(max)) coincided with F(0) (n=17, F(0)/F(max)=1.00+/-0.09 for 80% LL and 1.00+/-0.20 for 85% LL). Also, the velocity at zero force (V(max)) was obtained from the extrapolation. When compared to the bilateral movements, unilateral movements gave rise to a smaller F(max) but the same V(max), suggesting that V(max) is independent of force and therefore represents the proper unloaded velocity. It is suggested that some neural mechanisms may be involved in the force-velocity relation of the knee-hip extension movement, and make it exhibit a linear appearance rather than a hyperbola.  相似文献   

7.
8.
We have investigated the molecular basis of elastic fiber formation on fibrillin microfibrils. Binding assays revealed high affinity calcium-independent binding of two overlapping fibrillin-1 fragments (encoded by central exons 18-25 and 24-30) to tropoelastin, which, in microfibrils, map to an exposed "arms" feature adjacent to the beads. A further binding site within an adjacent fragment (encoded by exons 9-17) was within an eight-cysteine motif designated TB2 (encoded by exons 16 and 17). Binding to TB2 was ablated by the presence of N-terminal domains (encoded by exons 1-8) and reduced after deleting the proline-rich region. A novel transglutaminase cross-link between tropoelastin and fibrillin-1 fragment (encoded by exons 9-17) was localized by mass spectrometry to a sequence encoded by exon 17. The high affinity binding and cross-linking of tropoelastin to a central fibrillin-1 sequence confirm that this association is fundamental to elastic fiber formation. Microfibril-associated glycoprotein-1 showed calcium-dependent binding of moderate affinity to fibrillin-1 N-terminal fragment (encoded by exons 1-8), which localize to the beads. Microfibril-associated glycoprotein-1 thus contributes to microfibril organization but may also form secondary interactions with adjacent microfibril-bound tropoelastin.  相似文献   

9.
10.
11.
To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, we prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the alpha-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.  相似文献   

12.
The exon 16-encoded juxtamembrane (JM) domain of human insulin receptor (hIR) harbors the NPEY motif which couples the insulin-activated hIR kinase to downstream signal transduction molecules. We sought to determine if signal transduction requires the entire exon 16-encoded 22-amino acid JM domain. Transfected CHO cells were generated stably expressing either the wild-type hIR (hIR-WT) or two mutant hIRs (hIRDeltaEx16 in which the JM domain was deleted, and hIRrosJM in which the deleted segment was replaced by the corresponding domain of v-ros protein). The mutant hIRDeltaEx16 and hIRrosJM exhibited similar insulin-binding as the hIRWT. Insulin internalization and insulin dose-response experiments toward activation of downstream signal transduction molecules demonstrated that: i) the presence of intact hIR-JM domain which harbors the NPEY motif is essential for Shc phosphorylation but not for IRS-1 phosphorylation; ii) insulin signal transduction can occur independent of the JM domain of hIR and without participation of the NPEY motif; iii) engagement of this putative alternative downstream signal transduction is Shc independent and is dependent on insulin concentration; and iv) insulin internalization does not necessarily require the hIR specific aa sequence of the JM domain which can be partially substituted by the JM domain of the v-ros tyrosine kinase.  相似文献   

13.
Structure-function studies of the insulin molecule indicate that an insulin B chain domain comprising residues 22-26 is involved both in binding to the insulin receptor (INSR) and in insulin dimer formation, suggesting that this domain might also interact with a structure resembling the insulin dimer interface in the INSR. Expression of a mutant INSR cDNA with a deletion of the region corresponding to exon 2 of the INSR gene produces a protein devoid of insulin-binding activity, although the mutant protein is processed appropriately to alpha- and beta-subunits, suggesting that the insulin-binding domain is encoded at least in part by exon 2. Within this region of the INSR molecule, the sequence 83-103 fulfills the structural criteria for a dimer interface. Studies of mutant INSRs with substitutions for phenylalanine 88 or 89 show that the presence of phenylalanine at position 89 is essential for full binding affinity.  相似文献   

14.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

15.
The characterization of the cellular and molecular mechanisms governing insulin receptor internalization is of crucial importance to better define the functional role of this process in insulin receptor regulation and insulin action both in normal and pathological conditions. In the present work we have characterized the factors intrinsic to the receptor which are responsible for the triggering and regulation of insulin receptor internalization. We found that: (a) insulin induces the internalization of its receptor via activation of the tyrosine kinase intrinsic to the cytoplasmic domain of the molecule; (b) this ligand-specific step consists in the redistribution of the receptor from microvilli where binding occurs to the nonvillous region of the cell surface where internalization occurs; (c) the second step of the internalization process, i.e. association with clathrin-coated pits, requires a consensus sequence of the juxtamembrane domain of the receptor, and (d) this step is ligand-independent and is responsible for the constitutive internalization of the receptor.  相似文献   

16.
The implication that host cellular prion protein (PrP(C)) may function as a cell surface receptor and/or portal protein for Brucella abortus in mice prompted an evaluation of nucleotide and amino acid variation within exon 3 of the prion protein gene (PRNP) for six US bison populations. A non-synonymous single nucleotide polymorphism (T50C), resulting in the predicted amino acid replacement M17T (Met --> Thr), was identified in each population. To date, no variation (T50; Met) has been detected at the corresponding exon 3 nucleotide and/or amino acid position for domestic cattle. Notably, 80% (20 of 25) of the Yellowstone National Park bison possessing the C/C genotype were Brucella spp. seropositive, representing a significant (P = 0.021) association between seropositivity and the C/C genotypic class. Moreover, significant differences in the distribution of PRNP exon 3 alleles and genotypes were detected between Yellowstone National Park bison and three bison populations that were either founded from seronegative stock or previously subjected to test-and-slaughter management to eradicate brucellosis. Unlike domestic cattle, no indel polymorphisms were detected within the corresponding regions of the putative bison PRNP promoter, intron 1, octapeptide repeat region or 3'-untranslated region for any population examined. This study provides the first evidence of a potential association between nucleotide variation within PRNP exon 3 and the presence of Brucella spp. antibodies in bison, implicating PrP(C) in the natural resistance of bison to brucellosis infection.  相似文献   

17.
We have isolated and characterized the gene encoding the human androgen receptor. The coding sequence is divided into eight coding exons and spans a minimum of 54 kilobases. The positions of the exon boundaries are highly conserved when compared to the location of the exon boundaries of the chicken progesterone and human estrogen receptor genes. Definition of the intron/exon boundaries has permitted the synthesis of specific oligonucleotides for use in the amplification of segments of the androgen receptor gene from samples of total genomic DNA. This technique allows the analysis of all segments of the androgen receptor gene except a small region of exon 1 that encodes the glycine homopolymeric segment. Using these methods we have analyzed samples of DNA prepared from a patient with complete androgen resistance and have detected a single nucleotide substitution at nucleotide 1924 in exon 3 of the androgen receptor gene that results in the conversion of a lysine codon into a premature termination codon at amino acid position 588. The introduction of a termination codon into the sequence of the normal androgen receptor cDNA at this position leads to a decrease in the amount of mRNA encoding the human androgen receptor and the synthesis of a truncated receptor protein that is unable to bind ligand and is unable to activate the long terminal repeat of the mouse mammary tumor virus in cotransfection assays.  相似文献   

18.
The epidermal growth factor receptor (EGFR) mediates the actions of a family of bioactive peptides that include epidermal growth factor (EGF) and amphiregulin (AR). Here we have studied AR and EGF mitogenic signaling in EGFR-devoid NR6 fibroblasts that ectopically express either wild type EGFR (WT) or a truncated EGFR that lacks the three major sites of autophosphorylation (c'1000). COOH-terminal truncation of the EGFR significantly impairs the ability of AR to (i) stimulate DNA synthesis, (ii) elicit Elk-1 transactivation, and (iii) generate sustained enzymatic activation of mitogen-activated protein kinase. EGFR truncation had no significant effect on AR binding to receptor but did result in defective GRB2 adaptor function. In contrast, EGFR truncation did not impair EGF mitogenic signaling, and in c'1000 cells EGF was able to stimulate the association of ErbB2 with GRB2 and SHC. Elk-1 transactivation was monitored when either ErbB2 or a truncated dominant-negative ErbB2 mutant (ErbB2-(1-813)) was overexpressed in cells. Overexpression of full-length ErbB2 resulted in a strong constitutive transactivation of Elk-1 in c'1000 but only slightly stimulated Elk-1 in WT or parental NR6 cells. Conversely, overexpression of ErbB2-(1-813) inhibited EGF-stimulated Elk-1 transactivation in c'1000 but not in WT cells. Thus, the cytoplasmic tail of the EGFR plays a critical role in AR mitogenic signaling but is dispensable for EGF, since EGF-activated truncated EGFRs can signal through ErbB2.  相似文献   

19.
The insulin receptor (IR) is a dimeric receptor, and its activation is thought to involve cross-linking between monomers initiated by binding of a single insulin molecule to separate epitopes on each monomer. We have previously shown that a minimized insulin receptor consisting of the first three domains of the human IR fused to 16 amino acids from the C-terminal of the alpha-subunit was monomeric and bound insulin with nanomolar affinity (Kristensen, C., Wiberg, F. C., Sch?ffer, L., and Andersen, A. S. (1998) J. Biol. Chem. 273, 17780-17786). To investigate the insulin binding properties of dimerized alpha-subunits, we have reintroduced the domains containing alpha-alpha disulfide bonds into this minireceptor. When inserting either the first fibronectin type III domain or the full-length sequence of exon 10, the receptor fragments were predominantly secreted as disulfide-linked dimers that both had nanomolar affinity for insulin, similar to the affinity found for the minireceptor. However, when both these domains were included we obtained a soluble dimeric receptor that bound insulin with 1000-fold higher affinity (4-8 pm) similar to what was obtained for the solubilized holoreceptor (14-24 pm). Moreover, dissociation of labeled insulin from this receptor was accelerated in the presence of unlabeled insulin, demonstrating another characteristic feature of the holoreceptor. This is the first direct demonstration showing that the alpha-subunit of IR contains all the epitopes required for binding insulin with full holoreceptor affinity.  相似文献   

20.
The Janus protein tyrosine kinases (Jaks) play critical roles in transducing growth and differentiation signals emanating from ligand-activated cytokine receptor complexes. The activation of the Jaks is hypothesized to occur as a consequence of auto- or transphosphorylation on tyrosine residues associated with ligand-induced aggregation of the receptor chains and the associated Jaks. In many kinases, regulation of catalytic activity by phosphorylation occurs on residues within the activation loop of the kinase domain. Within the Jak2 kinase domain, there is a region that has considerable sequence homology to the regulatory region of the insulin receptor and contains two tyrosines, Y1007 and Y1008, that are potential regulatory sites. In the studies presented here, we demonstrate that among a variety of sites, Y1007 and Y1008 are sites of trans- or autophosphorylation in vivo and in in vitro kinase reactions. Mutation of Y1007, or both Y1007 and Y1008, to phenylalanine essentially eliminated kinase activity, whereas mutation of Y1008 to phenylalanine had no detectable effect on kinase activity. The mutants were also examined for the ability to reconstitute erythropoietin signaling in gamma2 cells, which lack Jak2. Consistent with the kinase activity, mutation of Y1007 to phenylalanine eliminated the ability to restore signaling. Moreover, phosphorylation of a kinase-inactive mutant (K882E) was not detected, indicating that Jak2 activation during receptor aggregation is dependent on Jak2 and not another receptor-associated kinase. The results demonstrate the critical role of phosphorylation of Y1007 in Jak2 regulation and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号