首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pine barrens include an assortment of pyrogenic plant communities occurring on glacial outwash or rocky outcrops scattered along the Atlantic coastal plain from New Jersey to Maine, and inward across New England, New York, Pennsylvania, and the northern Great Lakes region. At least historically, pine barrens provided some of the highest quality terrestrial shrublands and young forests in the eastern North American sub‐boreal and northern temperate region. However, the mosaic open‐canopy, sparse‐shrub, and grassland early successional state is generally lacking in contemporary pine barrens. Many sites in the northeastern United States have converted to overgrown scrub oak (Quercus ilicifolia, Quercus prinoides) thickets and closed canopied pitch pine (Pinus rigida)‐dominated forests. Thinning pitch pine is a contentious issue for the imperiled pitch pine‐scrub oak barrens community type (G2 Global Rarity Rank, 6–20 occurrences). Here we provide a historical, ecological, and resource management rationale for thinning pitch pine forest to restore savanna‐like open barrens with a mosaic of scrub oaks, heath shrubs, and prairie‐like vegetation. We postulate that the contemporary dominance of pitch pine forest is largely of recent anthropogenic origin, limits habitat opportunities for at‐risk shrubland fauna, and poses a serious wildfire hazard. We suggest maintaining pitch pine‐scrub oak barrens at 10–30% average pitch pine cover to simultaneously promote shrubland biodiversity and minimize fire danger.  相似文献   

2.
ABSTRACT

Background: Invasive plants can negatively impact native communities, but the majority of the effects of these invasions have been demonstrated only for temperate ecosystems. Tropical ecosystems, including the Cerrado, a biodiversity hotspot, are known to be invaded by numerous non-native species, but studies of their impacts are largely lacking.

Aims: Our research aimed at quantifying how Pinus spp. presence and density affected Cerrado plant communities.

Methods: We sampled areas invaded and non-invaded by Pinus spp. to determine if pine invasion affected native tree richness, diversity, evenness, and density. We also evaluated if community composition differed between invaded and non-invaded sites.

Results: We found invaded plots had lower native tree densities than non-invaded plots and that Pinus spp. invasions changed native tree communities by reducing native species abundances.

Conclusion: Invasive pines had negative impacts on the native Cerrado tree community by reducing native plant density and changing species abundances. Reduced density and abundance at early invasion stages can result in reduction in biodiversity in the long term.  相似文献   

3.
Abstract: Ponderosa pine (Pinus ponderosa) forests with Gambel oak (Quercus gambelii) are associated with higher bird abundance and diversity than are ponderosa pine forests lacking Gambel oak. Little is known, however, about specific structural characteristics of Gambel oak trees, clumps, and stands that may be important to birds in ponderosa pine-Gambel oak (hereafter pine-oak) forests. We examined associations among breeding birds and structural characteristics of Gambel oak at a scale similar in size to individual bird territories in pine-oak forests in northern Arizona and western New Mexico, USA. Avian species richness and occurrence of some bird species were associated with specific growth forms of Gambel oak. Estimated probability of Virginia's warblers (Vermivora virginiae), black-headed grosbeaks (Pheucticus melanocephalus), and red-faced warblers (Cardellina rubrifrons) occurring at points increased with increasing density of pole-sized Gambel oak 7–15 cm in diameter at breast height. We also found evidence that large Gambel oak trees (≥23 cm dbh) were associated with increased occurrence of yellow-rumped warblers (Dendroica coronata) at points. Some avian associations with oak were influenced by characteristics of ponderosa pines. For example, bird species richness was positively associated with the abundance of large Gambel oak when density of large pine trees ≥23 cm in diameter at breast height was low. Because large oak trees are rare and their numbers are thought to be declining, efforts should be made to retain and promote growth of additional oaks in this size class. Forest management practices that maintain forest openings, such as prescribed burning, could promote growth of pole-sized Gambel oak, which appears important to some bird species in pine-oak forests.  相似文献   

4.
Abstract Early recognition of plant invaders has been widely identified as the key to their successful management and yet too often species are only noticed and receive adequate attention once they have become widespread and control has become difficult and costly. Slow growing species are at particular risk of being overlooked, despite their ability to cause significant ecological damage. One such species, Pinus radiata (Monterey pine), has spread from large commercial plantations into native vegetation across the southern hemisphere. Here we review the status of P. radiata invasion in Australia, a country where the species has successfully naturalized but remains an invader of only low‐level concern. Patterns of spread in Australia mirror those in New Zealand and South Africa, two countries where invasive pines are considered major threats to biodiversity. While many areas adjacent to plantations remain free from invasion, dense infestations have occurred at several sites in areas of high conservation value demanding the implementation of adequate control measures. Expansion of Australia's plantation estate and increasing human disturbance of natural areas surrounding plantations will increase the likelihood and extent of invasion. Continued monitoring of wildling populations will determine the ability of pines to dominate native eucalypt forest and will provide insight into broader ideas of community invasibility.  相似文献   

5.
Conifers, which are widely planted as fast growing tree crops, are invading forested and treeless environments across the globe, causing important changes in biodiversity. However, how small-scale impacts on plant diversity differ according to pine size and habitat context remains unclear. We assessed the effects of different stages of pine invasion on plant communities in forest and steppe sites located in southern Chile. In each site, we sampled plant diversity under and outside the canopy of Pinus contorta individuals, using paired plots. We assessed the relative impact of pine invasion on plant species richness and cover. In both sites, richness and cover beneath pine canopy decreased with increasing pine size (i.e. height and canopy area). A significant negative impact of pines on species richness and plant cover was detected for pines over 4 m in height. The impact of pines on plant richness and cover depended on pine size (i.e. canopy area) and habitat type. Larger pines had more negative impacts than smaller pines in both sites, with a greater impact for a given pine size in the Patagonian steppe compared to the A. araucaria forest. Species composition changed between under and outside canopy plots when pines were 4 m or taller. Pine presence reduced cover of most species. The impacts of pine invasions are becoming evident in forested and treeless ecosystems of southern Chile. Our results suggest that the magnitude of pine invasion impacts could be related to how adapted the invaded community is to tree cover, with the treeless environment more impacted by the invasion.  相似文献   

6.
Six species of pines are distributed in Xizang. They are: Pinus griffithii McClell., P. armandi Franch. and P. gerardiana Wall. of haploxylon pines and P. densata Mast., P. yttnnanensis French. and P. roxburghii Sarg. of diploxylon pines. According to the relation of these pines with water-temperature conditions, 4 ecological types may be divided: the warm-temp erate and wet type (P. griffithii), the warm-temperate and dry type (P. yunnanensis, P. roxburghii), the temperate-cold and moist type (P. armandi) and the temperate-cold and dry type (P. densata). The composition and structure of every pine community reflect the ecological environments of the given pine in the region. The main pine comnmnity in Xizang are P. griffithii forest and P. densata forest. The P. griffithii forest is distributed on the southern side of Himalayas, while the P. densata forest on the northern side of Himalayas and the southern part of Hengtuan mountains. This indicates that the Himalaya range is a clear boundary and there is difference in water-temperature condition between southern and northern parts. They belong different vegetation regions. The different distribution of other several pine forests reflects the difference of environmental conditions within these two regions. These facts have significance in the investigation of the regularity of vegetation distribution and vegetation division in Xizang. Besides, the vertical distribution of pines cannot be used as a marker to divide the altitudinal belts due to the wide range of adaptation of pines, though there must be regularity of vertical distribution too.  相似文献   

7.
Question: Does the overstorey of pine savannas influence plant species biodiversity in the ground cover? Location: Camp Whispering Pines (30°41’N; 90°29’W), eastern Louisiana (USA). Methods: We used ecologically sensitive restoration logging to remove patches of Pinus palustris (longleaf pine) in a second‐growth loess plain Pinus palustris savanna managed using frequent lightning season fires. Five years later, we measured numbers of vascular plant species and transmitted light in replicated 100‐m2 plots. Treatments involved three different overstorey conditions: no overstorey for 5 years, no overstorey for several decades, and overstorey pines present for decades. Results: Both recent and long‐term openings contained, on average, about 100 vascular plant species per 100 m2, 20% more than in similar‐sized areas beneath overstorey trees. Responses varied with life form; more herbaceous species occurred in recent and older overstorey openings than beneath overstorey trees. Total numbers of all species and of less abundant forb species were positively and linearly related to light transmitted to ground level. Those species responding to openings in the overstorey and positively associated with increased transmitted light levels were monocarpic and shortlived perennial forb and grass species with a seed bank in the soil. In addition, community structure, as reflected in species composition and abundances, appeared to vary with canopy condition. Conclusions: Restoration involving ecologically sensitive removal of patches of overstorey pines in frequently burned pine savannas should benefit the ground cover and increase plant species biodiversity as a result of increased abundance of seed bank species.  相似文献   

8.
Seed Bank Viability in Disturbed Longleaf Pine Sites   总被引:4,自引:0,他引:4  
Some of the most species‐rich areas and highest concentrations of threatened and endangered species in the southeastern United States are found in wet savanna and flatwood longleaf pine (Pinus palustris Mill.) communities. Where intensive forestry practices have eliminated much of the natural understory of the longleaf ecosystem, the potential for reestablishment through a seed bank may present a valuable restoration opportunity. Longleaf pine sites converted to loblolly pine plantations and non‐disturbed longleaf sites on the Coastal Plain of North Carolina were examined for seed bank presence and diversity. Conducting vegetation surveys and examining the seed bank using the seedling emergence technique allowed for verification of the seed bank presence, as well as evaluation of the quality of the seed bank on disturbed longleaf pine sites. Forty‐three species and over 1,000 individuals germinated, and the seed banks of both the disturbed and non‐disturbed stand types contained species not noted in the vegetation survey. Although many of these species were considered weedy and typical of disturbance, numerous taxa were indicative of stable longleaf pine communities. This study confirms both the presence and quality of seed banks in highly disturbed former longleaf pine sites, suggesting that the seed bank may be an important tool in restoration efforts.  相似文献   

9.
Park  Andrew 《Plant Ecology》2003,169(1):1-20
Surface fire can modify spatial patterns and self-thinning in pine-oak ecosystems. Spatial pattern analyses were used to compare pattern development and interspecific spatial interactions in trees and seedlings in five Madrean pine-oak stands with different recent fire histories. Interspecific and intraspecific patterns were compared in small (< 15 cm dbh) and large (< 15 cm dbh) diameter classes of the pines (Pinus durangensis, P. teocote, and P. leiophylla) and oaks (Quercus sideroxylla, Q. crassifolia, and Q. laeta) that collectively dominated the five stands. Numbers of juvenile trees in 2.5 × 2.5 m subplots were correlated with cumulative distances to adult trees. Small pine and oak trees were intraspecifically clustered at all scales, irrespective of fire regime. Large pines were strongly clustered only in stands with longer fire-free intervals, and patterns of large versus small pine trees were regular or random in frequent fire stands. These patterns were consistent with fire-induced mortality of maturing trees under frequent fire. Large and small pines were segregated from small oaks at short and long distances in one stand with a 32-year fire-free interval, implying that two or more dynamic factors had produced regular patterns at different scales. Such regular spatial patterns at short distances were not seen in other stands. Therefore, there was little evidence for direct competition between oaks and pines. The results reported here are consistent with studies from other pine-oak ecosystems showing that different fire regime and site factors interact to influence stand development processes and relative dominance of pines and oaks. In some stands, the continued absence of fire could foster increasing tree densities and an intensification of local neighborhood effects, producing segregation of pine and oak species at longer distances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Determining the relative contributions of genetic and environmental factors to phenotypic variation is critical for understanding the evolutionary ecology of plant species, but few studies have examined the sources of phenotypic differentiation between nearby populations of woody plants. We conducted reciprocal transplant experiments to examine sources of variation in growth rate, form, survival, and maturation in a globally rare dwarf population of pitch pine (Pinus rigida) and in surrounding populations of normal-stature pitch pines on Long Island, New York. Transplants were monitored over a 6-yr period. The influence of seedling origin on height, growth rate, survival, and form (single-stemmed vs. multi-stemmed growth habit) was much smaller than the effect of transplanting location. Both planting site and seed origin were important factors in determining time to reproduction; seedlings originating from dwarf populations and seedlings planted at the normal-stature site reproduced earliest. These results suggest that many of the differences between dwarf and normal-stature pitch pines may be due more to plastic responses to environmental factors than to genetic differentiation among populations. Therefore, preservation of the dwarf pine habitat is essential for preserving dwarf pine communities; the dwarf pines cannot be preserved ex situ.  相似文献   

11.
12.
《Acta Oecologica》2004,25(1-2):93-101
Loss and fragmentation of habitat resulting from the clearing of forests for agriculture and urban development threaten the persistence of thousands of species worldwide. The clearing of native forest to plant a monoculture of exotic trees may also reduce and fragment the habitat available for indigenous plants and animals. Metacommunity theory suggests that the species richness of a community in a patch of habitat will increase with patch size but decrease with patch isolation. We investigated whether replacement of native Eucalyptus forest with a plantation of Pinus radiata has reduced and fragmented habitat for frogs, leading to a lower species richness of frog communities in the pine plantation and in small and/or isolated remnant patches of native forest. We surveyed frogs at 60 sites at streams and wetlands in the pine plantation, remnant patches of native forest surrounded by pines, and adjacent areas of contiguous native forest near Tumut in New South Wales, Australia. Only two of eight species of frogs were recorded in the pine plantation, and regression modelling indicated that streams and wetlands in the pines supported fewer frog species than those in remnant patches or the intact native forest. In addition, species richness tended to be higher at wide, shallow swamps and marshes near the headwaters of streams, with herbs, grasses, shrubs, reeds, sedges and rushes in the emergent and fringing vegetation. There was little evidence to suggest that larger eucalypt remnants supported more species of frogs, or that remnants isolated by greater expanses of pines supported fewer species, but we had low power to detect these effects with our data set. Our results support the preservation of all remnants of native forest along drainage lines and around swamps, soaks and bogs, regardless of size. Where new pine plantations are established, for example, on cleared agricultural land, care should be taken to maintain the structural and vegetative characteristics of water bodies to ensure that they continue to provide suitable breeding habitat for frogs.  相似文献   

13.
Monterey pine (Pinus radiata D. Don) has only five extant native populations: three disjunct populations along the coast of California, USA and two on Mexican islands. All populations have been influenced by human activity, but the island populations in particular have been affected by introduced biota. On Guadalupe Island, the pine population has suffered drastically from overgrazing by introduced goats. We visited both island populations and described their status, took measurements, and made seed collections. We counted approximately 200 mature pine trees and virtually no seedlings on Guadalupe Island: a reduction of approximately half the population in the last 50 years. The trees are all large (mean diameter of 144 cm) –considerably larger than trees from the other four populations – and arguably near the end of their natural lifespan. The population on Cedros Island is much more robust, with thousands of trees. None sampled were as large as those on Guadalupe Island (mean diameter of 20 cm) and many groves were young and even-aged – presumably the consequence of natural regeneration after a recent fire. Tissue samples from trees on both islands did not show evidence of infection from the pitch canker pathogen, Fusarium circinatum, that has caused significant mortality in the three mainland populations. Caution is recommended in any restoration activity for the Guadalupe Island pines. Inbreeding levels could indicate the need for some planting or seeding intervention but there are also risks associated with this. Natural regeneration – after goat removal – is preferred.  相似文献   

14.
Extractable and solvent insoluble, ester-bound lipids were analysed in an acid, sandy soil profile under Corsican pine. The n-alkanes and alkanoic acids from the soil profile showed rather poor correlations with those from the pine needles and roots, while the n-alkanol composition in the mineral horizons strongly indicated the presence of lipids derived from a previous grass vegetation. Although the ester-bound lipids (ω-hydroxyalkanoic acids and α,ω-alkanedioic acids (>C24)) suggested that plant sources other than pines were present in the mineral soil horizons their composition was less contaminated and a clear distinction between needle and root input could be discerned. The divergent clustering of soil horizons and plant materials by individual and combined compound classes emphasized the usefulness of both extractable lipids and cutin/suberin in unravelling (past) vegetation and tissue history and contributions to soil organic matter.  相似文献   

15.
Abstract

Degradation of forest sites on the island of Rab goes back several hundred years. The causes include in the first place negative anthropogenic impacts, followed by climatic conditions that are hostile to natural regeneration of climatozonal vegetation. In a part of the island, devastation has led to the disappearance of forests or the preservation of only degraded forms of the basic autochthonous forest vegetation, the forest of holm oak and manna ash (Fraxino orni‐Quercetum ilicis H‐ic/1956/1958). The beginning of the twentieth century saw intensive reforestation activities aimed at halting site degradation processes. The main task of the pines was to create site conditions for the return of climatozonal vegetation. The paper examines the correlation between pine cultures and the return of autochthonous vegetation. Differences were found among forest cultures of maritime (Pinus pinaster Aiton), black (Pinus nigra J.F.Arnold) and Aleppo pine (Pinus halepensis L.). Moreover, the results confirm the justifiability of reforesting degraded sites with pines, but they also reveal the absence of more pronounced effects on the sites. Today, there are about 1000 hectares of pine cultures on the island of Rab, yet climatozonal vegetation has been re‐established in only a small part of these forest cultures.  相似文献   

16.
The success of restoration plantings in restoring indigenous forest vascular plant and ground invertebrate biodiversity was assessed on previously grass-covered sites in the eastern South Island, New Zealand. The composition and structure of grassland, three different aged restoration plantings (12, 30, and 35 years old), a naturally regenerating forest (100 years old), and a remnant of the original old-growth forest of the area were measured. The restoration plantings are dominated by the native tree Olearia paniculata, which is not indigenous to the study area. Despite this, indigenous forest invertebrate and plant species are present in all three restoration sites and with increasing age the restoration sites become compositionally more similar to the naturally regenerating and mature forest sites. In particular the regenerating vegetation of the restoration sites is very similar floristically to the regenerating vegetation of the naturally regenerating and mature forest sites, despite marked differences in the current canopy vegetation reflecting the presence of the planted O. paniculata. The presence of regeneration in all three restoration sites indicates that the functional processes that initiate regeneration, such as dispersal, are present. The majority of regenerating tree species (71%) are bird dispersed and it is clear that birds play an important role in the recolonization of plant species at these sites despite the absence of edible fruit attractive to frugivorous birds on O. paniculata, a wind-dispersed species. The strong correlations between plant and invertebrate community composition and study-site age (r = 0.80, ?0.24, ?0.68 for plants, beetles, and spiders, respectively) suggest that the restoration site plant and invertebrate communities are undergoing change in the direction of the naturally regenerating and mature forest communities. Without restoration, colonization of grassland by forest plants is very slow in the study area and the restoration plantings studied here have been successful because they have considerably accelerated the return to forest at these sites.  相似文献   

17.
Prairies in the Pacific Northwest have been actively restored for over a decade. Competition from non‐native woody and herbaceous species has been presumed to be a major cause for the failure of restoration projects. In this research, plugs of the native prairie bunchgrass, Festuca idahoensis Elmer var. roemeri (Pavlick), were grown from seed in a nursery and transplanted into a grassland site dominated by non‐native pasture grasses. The growth of the plants was followed for three years, and biomass of all volunteer plants was measured. Before planting, five treatments were applied to the plots: removal of vegetation by burning, removal of vegetation by an herbicide‐and‐till procedure, soil impoverishment by removal of organic matter, fertilizer application, and compost mulch application. Initial growth of Idaho fescue plugs was greatest with fertilizer and compost mulch. Plants grown in mulched plots were also able to photosynthesize later into the dry summer season. After the first year, plots initially fertilized or composted had the lowest survival rate of Idaho fescue. Impoverished and herbicide‐and‐till plots had the greatest 3‐year survival. Mulched plots supported the greatest weed growth after three years. Stressful environments give a competitive advantage to Idaho fescue in prairie restoration projects. As weedy species increase, growth and survival of Idaho fescue decreases.  相似文献   

18.
Summary Much of the tree and shrub planting that has been conducted on farms in Western Australia over the past three decades has not been done with the specific intention of creating habitat or conserving biodiversity, particularly commercially oriented monocultures like oil mallee plantings. However, such plantings may nonetheless provide some habitat resources for native plants and animals. This study assessed the habitat quality of farm plantings (most of which were not planted with the primary intention of biodiversity conservation) at 72 sites across a study region in the central wheatbelt of Western Australia. Widely accepted habitat metrics were used to compare the habitat resources provided by planted farmland vegetation with those provided by remnant woodland on the same farms. The impact of adjacency of plantings to woodland and, in the case of oil mallees, the planting configuration on predicted habitat quality is assessed. Condition Benchmarks for five local native vegetation communities are proposed. Farmland plantings achieved an average Vegetation Condition Score (VCS) of 46 out of a possible 100, while remnant woodland on the same farms scored an average 72. The average scores for farm plantings ranged from 38–59 depending on which of five natural vegetation communities was used as its benchmark, but farm plantings always scored significantly less than remnant woodland (P < 0.001). Mixed species plantings on average were rated more highly than oil mallees (e.g. scores of 42 and 36 respectively using the Wandoo benchmark) and adjacency to remnant woodland improved the score for mixed plantings, but not for oil mallees. Configuration of oil mallees as blocks or belts (i.e. as an alley farming system) had no impact on the VCS. Planted farmland vegetation fell short of remnant woodland in both floristic richness (51 planted native species in total compared with a total of more than 166 naturally occurring plant species in woodland) and structural diversity (with height, multiple vegetation strata, tree hollows and woody debris all absent in the relatively young 7–15‐year‐old farm plantings). Nonetheless farmland plantings do have measurable habitat values and recruitment and apparent recolonization of plantings with native plant species was observed. Habitat values might be expected to increase as the plantings age. The VCS approach, including the application of locally relevant Benchmarks is considered to be valuable for assessing potential habitat quality in farmland vegetation, particularly as a tool for engaging landholders and natural resource management practitioners.  相似文献   

19.
野火对松属植物的进化和分布有重要的影响。在与野火长期抗争中,松属植物形成了一系列性状提高在易火生境中的适合度,维持种群生存与繁衍。西南地区是中国野火高发区,作为这一地区特有松树,云南松、思茅松和高山松具有一些典型的火适应性状,如厚树皮。以这3种松树和东部常见的马尾松为研究对象,比较4种松树的火适应对策。结果表明:4种松树的火适应性状存在一定的差异。与火适应相关的13项性状主成分分析显示,4个种在空间上总体是分离的,也表现出一些重叠。其中云南松火适应生活史对策是火耐受型和火依赖型的中间类型,适应会发生林冠火的生境。高山松、思茅松和马尾松都是火耐受型,通过快速高生长、厚树皮等性状适应生境不同频度的地表火。四种松树火适应对策与分布区火险基本相符。表明野火在这一区域广泛存在,并对植物进化和森林格局有重要影响。野火在西南地区松属分布和种群维持中的生态作用应被给予足够重视。  相似文献   

20.
The spread of non‐native conifers into areas naturally dominated by other vegetation types is a growing problem in South America. This process results in a landscape transformation as the conifers suppress native vegetation leading to reduced biodiversity, lower water availability and altered nutrient dynamics. Previous research highlights the broad spatial extents of land cover change in parts of Chile. However, in Southern Chile, the extent of plantations and the landscape characteristics associated with plantations and ongoing pine invasions are poorly understood. Here, we characterised non‐native pine land cover within one Landsat scene (World Reference System 2 Path 232/Row 92; ~34 000 km2) in Southern Chile. We created training data based on historical high‐resolution imagery, derived land cover predictors from time series of Landsat observations and used a Random Forest classifier to map the distribution of non‐native pines. The overall classification accuracy was 88%, and the accuracy of the non‐native pine class exceeded 90%. Although 71% of non‐native pine patches were within 500 m of other non‐native pine patches, isolated non‐native pine patches were found to occur up to 55 km from the nearest neighbour. These distant plantations could exacerbate invasion risk by creating propagule sources for novel invasion fronts. In relation to landscape characteristics, non‐native pines were found to be more likely to occur in low slope and mid‐elevation areas. Because most of the study area is native forest, most non‐native pine patches border native forest. However, non‐native pine patches were almost three times more likely than random patches to border grass/agriculture. This suggests that grasslands and disturbed sites, which have low resistance to non‐native pine invasion, are disproportionately exposed to pine propagules. Our results indicate that non‐native pine plantations are extensive across Southern Chile, and well poised to cause future invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号