首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Purine inhibitors of cyclin-dependent kinases attract attention as potential anticancer drugs because their first representative roscovitine recently entered clinical trials. Although well described in terms of structure-activity relationships, we still present here a novel modification of the purine scaffold influencing their inhibitory properties. The introduced C-8 substituents, however, lowered the CDK inhibitory activity of roscovitine, whereas the antiproliferative potential of several derivatives remained high.  相似文献   

2.
A series of N-((1,3-diphenyl-1H-pyrazol-4-yl)methyl)aniline derivatives (5a-8d) have been designed and synthesized, and their biological activities were also evaluated as potential antitumor and cyclin dependent kinase 2 (CDK2) inhibitors. Among all the compounds, compound 5a displayed the most potent CDK2/cyclin E inhibitory activity in vitro, with an IC(50) of 0.98±0.06μM. Antitumor assays indicated that compound 5a owned high antiproliferative activity against MCF-7 and B16-F10 cancer cell lines with IC(50) values of 1.88±0.11 and 2.12±0.15μM, respectively. Docking simulation was performed to insert compound 5a into the crystal structure of CDK2 at active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity in tumor growth may be a potential anticancer agent.  相似文献   

3.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

4.
Inhibiting Cyclin-dependent kinase 2 (CDK2) has been established as a therapeutic strategy for the treatment of many cancers. Accordingly, this study aimed at developing a new set of quinazolinone-based derivatives as CDK2 inhibitors. The new compounds were evaluated for their anticancer activity against sixty tumour cell lines. Compounds 5c and 8a showed excellent growth inhibition against the melanoma cell line MDA-MB-435 with GI% of 94.53 and 94.15, respectively. Cell cycle analysis showed that compound 5c led to cell cycle cessation at S phase and G2/M phase revealing that CDK2 could be the plausible biological target. Thus, the most cytotoxic candidates 5c and 8a were evaluated in vitro for their CDK2 inhibitory activity and were able to display significant inhibitory action. The molecular docking study confirmed the obtained results. ADME study predicted that 5c had appropriate drug-likeness properties. These findings highlight a rationale for further development and optimisation of novel CDK2 inhibitors.  相似文献   

5.
Revealing selectivity mechanism of cyclin-dependent kinases (CDK) and their inhibitors is an important issue to develop potential anticancer drugs. The substituted 4-(Pyrazol-4-yl)-pyrimidines are potent inhibitors of CDK4 but not of the highly homologous CDK2. In order to reveal the inhibitory selectivity of these inhibitors to CDK4 over CDK2, we select one of substituted 4-(Pyrazol-4-yl)-pyrimidines as a representative (marked as A1 hereunder) and perform molecular docking, molecular dynamics simulations and binding free energy analysis for CDK4/A1 and CDK2/A1, respectively. The electrostatic and van der Waals (vdW) interactions of the A1 inhibitor with CDK4/CDK2 are discussed. The computed binding free energies based on the MM-PBSA method are consistent with experimental bioactivity ranking of A1 inhibitor to CDK4/CDK2. On the other hand, the conformational characteristics of CDK2 and CDK4 induced by A1 inhibitor are analysed and revealed. Results demonstrate that the vdW interactions considerably contribute to binding of CDK4/CDK2 with A1 inhibitor and are similar in size. The hydrogen bonding between A1 inhibitor and CDK4/CDK2 is considerably favourable to the binding, in which the hydrogen bond between the NH group of the pyrazole group of A1 and the residue Asp158 of CDK4 plays a crucial role in inhibitory selectivity of A1 inhibitor to CDK4 over CDK2. The electrostatic interaction energy differences between the corresponding residues of CDK4/A1 and CDK2/A1 confirm the above inference. The conformational changes of CDK2 and CDK4 induced by A1 inhibitor influence the selectivity of A1 inhibitor to CDK4/CDK2.  相似文献   

6.
As serine/threonine kinase, the cyclin dependent kinase 2 (CDK2) is a promising target for various diseases such as cerebral hypoxia, cancer, and neurodegenerative diseases. Here we reported the structure-based synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as CDK2 inhibitors, which exhibited potent CDK2 inhibitory activities, as well as anticancer activities in low concentration against two human cancer cell lines (MCF-7 and HCT116). In particular, compounds 11a and 11f (IC50 values of 0.11 and 0.09?μM for CDK2, respectively) have demonstrated significantly inhibitory potency against CDK2 and have showed great inhibitory activities against MCF-7 and HCT116 cell lines.  相似文献   

7.
Hepatocellular carcinoma is one of the most common cancers in worldwide. We previously reported a novel thienopyridine derivative 3-amino-6-(3,4-dichlorophenyl) thieno[2,3-b]pyridine-2-carboxamide (SKLB70359) which possesses anticancer activity against hepatocellular carcinoma. In present study, we further investigated its anticancer activity and possible mechanism. The SKLB70359 treatment decreased the viability of a panel of hepatocellular carcinoma cell lines in a concentration- and time-dependent manner with IC(50) 0.4 ~ 2.5 μM. The mechanism study showed that SKLB70359 induced G0/G1 cell cycle arrest and then led to apoptotic cell death of HepG2 cell. The SKLB70359 induced G0/G1 cell cycle arrest was characterized by down-regulation of cyclin-dependent kinase 2 (CDK2), CDK4, CDK6 expression and up-regulation of p53, p21(WAF1). Activating of caspase-3 and caspase-9 was also observed. Meanwhile, proliferation inhibitory effect of SKLB70359 was associated with decreased level of phosphorylated p44/42 mitogen activated protein kinase (p44/42 MAPK) and phosphorylated retinoblastoma protein (Rb). Moreover, SKLB70359 exhibit less toxicity to non-cancer cells than tumor cells. In conclusion, the findings in this study suggested that SKLB70359 have potential anticancer efficacy via G0/G1 cell cycle arrest and apoptosis induction. Its potential to be a candidate of anticancer agent is worth being further investigated.  相似文献   

8.
9.
Based on our previous experiences with synthesis of purines, novel 2,6,9-trisubstituted purine derivatives were prepared and assayed for the ability to inhibit CDK1/cyclin B kinase. One of newly synthesized compounds designated as olomoucine II, 6-[(2-hydroxybenzyl)amino]-2-[[1-(hydroxymethyl)propyl]amino]-9-isopropylpurine, displays 10 times higher inhibitory activity than roscovitine, potent and specific CDK1 inhibitor. Olomoucine II in vitro cytotoxic activity exceeds purvalanol A, the most potent CDK inhibitor, as it kills the CEM cells with IC(50) value of 3.0 microM.  相似文献   

10.
Structure-activity studies of 1H-pyrazolo[3,4-b]pyridine 1 have resulted in the discovery of potent CDK1/CDK2 selective inhibitor 21h, BMS-265246 (CDK1/cycB IC(50)=6 nM, CDK2/cycE IC(50)=9 nM). The 2,6-difluorophenyl substitution was critical for potent inhibitory activity. A solid state structure of 21j, a close di-fluoro analogue, bound to CDK2 shows the inhibitor resides coincident with the ATP purine binding site and forms important H-bonds with Leu83 on the protein backbone.  相似文献   

11.
To generate new scaffold candidates as highly selective and potent cyclin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 (IC50: 3 microM), CDK1 (IC50: 4.9 microM), and CDK4 (IC50: 3 microM), yet had much less inhibitory effect (IC50: >20 microM) on other kinases, such as casein kinase 2-1 (CK2- alpha1), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.  相似文献   

12.
N-Aryl aminothiazoles 6-9 were prepared from 2-bromothiazole 5 and found to be CDK inhibitors. In cells they act as potent cytotoxic agents. Selectivity for CDK1, CDK2, and CDK4 was dependent of the nature of the N-aryl group and distinct from the CDK2 selective N-acyl analogues. The N-2-pyridyl analogues 7 and 19 showed pan CDK inhibitory activity. Elaborated analogues 19 and 23 exhibited anticancer activity in mice against P388 murine leukemia. The solid-state structure of 7 bound to CDK2 shows a similar binding mode to the N-acyl analogues.  相似文献   

13.
14.
Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. Iterative structure-based design was used to optimize the ATP- competitive inhibition of CDK1 and CDK2 by O(6)-cyclohexylmethylguanines, resulting in O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine. The new inhibitor is 1,000-fold more potent than the parent compound (K(i) values for CDK1 = 9 nM and CDK2 = 6 nM versus 5,000 nM and 12,000 nM, respectively, for O(6)-cyclohexylmethylguanine). The increased potency arises primarily from the formation of two additional hydrogen bonds between the inhibitor and Asp 86 of CDK2, which facilitate optimum hydrophobic packing of the anilino group with the specificity surface of CDK2. Cellular studies with O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino) purine demonstrated inhibition of MCF-7 cell growth and target protein phosphorylation, consistent with CDK1 and CDK2 inhibition. The work represents the first successful iterative synthesis of a potent CDK inhibitor based on the structure of fully activated CDK2-cyclin A. Furthermore, the potency of O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine was both predicted and fully rationalized on the basis of protein-ligand interactions.  相似文献   

15.
A series of purine nucleoside analogues bearing an aryl and hetaryl group in position 6 were prepared and their biological activities were assessed by in vitro CDK1/Cyclin B1 and CDK2/Cyclin A2 kinase assay. From the synthesized chemicals, three Xylocydine derivatives 3h, 3i, and 3j exhibited specific inhibitory activities on CDK2/Cyclin A2 with IC(50) values of 4.6, 4.8, and 55 μM, respectively. Those three compounds all induced G1/S phase arrest in Human epithelial carcinoma cell line (HeLa), and the results suggested they may inhibit CDK2 activity in vitro. Furthermore, molecular modeling study, their docking into Cyclin Dependant Kinase 2 (CDK2) active site showed high docking scores. Taken together, these data suggest that, those three compounds are good inhibitors of CDK2 for studying this kinase signal transduction pathway in cell system.  相似文献   

16.
The design and synthesis of a small library of 8-amidoflavone, 8-sulfonamidoflavone, 8-amido-7-hydroxyflavone, and heterocyclic analogues of flavopiridol is reported. The potential activity of these compounds as kinase inhibitors was evaluated by cytotoxicity studies in MCF-7 and ID-8 cancer cell lines and inhibition of CDK2-Cyclin A enzyme activity in vitro. The antiproliferative and CDK2-Cyclin A inhibitory activity of these analogues was significantly lower than the activity of flavopiridol. Molecular docking simulations were carried out and these studies suggested a different binding orientation inside the CDK2 binding pocket for these analogues compared to flavopiridol.  相似文献   

17.
Cyclin Dependent Kinases CDKs unpredictable activity has been accounted for a wide assortment of human malignancies, so it might be conceivable to design pharmacologically relevant ligands that go about as specific and potent inhibitors of CDK2 action. In this respect, a series of novel pyrazolo[1,5-a][1,3,5]triazine derivatives were designed, synthesized and evaluated for CDK2 enzyme inhibitory and anticancer activity. Compounds 9f and 10c showed best CDK2 inhibition among the newly synthesized compounds, with percent inhibition at 82.38%, and 81.96% against CDK2 and IC50 of 1.85 and 2.09 µM, respectively. Additionally, the newly synthesized compounds were tested for their antiproliferative activity against 60 NCI cell lines. Molecular docking revealed the binding mode of these new compounds into the roscovitine binding site of CDK2 enzyme (PDB code: 3ddq). Conclusively, pyrazolotriazine derivatives represent a talented starting point for further study as anticancer drug.  相似文献   

18.
We previously reported the potential of a novel small molecule 3-amino-6-(3-methoxyphenyl)thieno[2.3-b]pyridine-2-carboxamide (SKLB70326) as an anticancer agent. In the present study, we investigated the anticancer effects and possible mechanisms of SKLB70326 in vitro. We found that SKLB70326 treatment significantly inhibited human hepatic carcinoma cell proliferation in vitro, and the HepG2 cell line was the most sensitive to its treatment. The inhibition of cell proliferation correlated with G(0)/G(1) phase arrest, which was followed by apoptotic cell death. The SKLB70326-mediated cell-cycle arrest was associated with the downregulation of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6 but not cyclin D1 or cyclin E. The phosphorylation of the retinoblastoma protein (Rb) was also observed. SKLB70326 treatment induced apoptotic cell death via the activation of PARP, caspase-3, caspase-9 and Bax as well as the downregulation of Bcl-2. The expression levels of p53 and p21 were also induced by SKLB70326 treatment. Moreover, SKLB70326 treatment was well tolerated. In conclusion, SKLB70326, a novel cell-cycle inhibitor, notably inhibits HepG2 cell proliferation through the induction of G(0)/G(1) phase arrest and subsequent apoptosis. Its potential as a candidate anticancer agent warrants further investigation.  相似文献   

19.
Protein kinases are important drug targets, especially in the area of oncology. This paper reports the synthesis and biological evaluation of new 7-azaindole derivatives bearing benzocycloalkanone motifs as potential protein kinase inhibitors. Four compounds 8g, 8h, 8i, and 8l were discovered to inhibit cyclin-dependent kinase 9 (CDK9/CyclinT) and/or Haspin kinase in the micromolar to nanomolar range. 8l was identified as the most potent Haspin inhibitor (IC50 = 14 nM), while 8g and 8h acted as dual inhibitors of CDK9/CyclinT and Haspin. These novel compounds constitute a promising starting point for the discovery of dual protein kinase inhibitors that have potential to be developed as anticancer agents, since both CDK9/CyclinT and Haspin are considered to be drug targets in oncology.  相似文献   

20.
Novel C-2, C-6, N-9 trisubstituted purines derived from the olomoucine/roscovitine lead structure were synthesized and evaluated for their ability to inhibit starfish oocyte CDK1/cyclin B, neuronal CDK5/p35 and erk1 kinases in purified extracts. Structure activity relationship studies showed that increased steric bulk at N-9 reduces the inhibitory potential whereas substitution of the aminoethanol C-2 side chain by various groups of different size (methyl, propyl, butyl, phenyl, benzyl) only slightly decreases the activity when compared to (R)-roscovitine. Optimal inhibitory activity against CDK5, CDK1 and CDK2, with IC50 values of 0.16, 0.45 and 0.65 microM, respectively, was obtained with compound 21 containing a (2R)-pyrrolidin-2-yl-methanol substituent at the C-2 and a 3-iodobenzylamino group at the C-6 of the purine. Compound 21 proved cytotoxic against human tumor HeLa cells (LD50-6.7 microM versus 42.7 microM for olomoucine, 24-h contact). Furthermore, unlike olomoucine, compound 21 was effective upon short exposure (LD50= 25.3 microM, 2-h contact). The available data suggest that the affinity for CDKs and the cytotoxic potential of the drugs are inter-related. However, no straightforward cell cycle phase specificity of the cytotoxic response to 21 was observed in synchronized HeLa cells. With the noticeable exception of pronounced lengthening of the S-phase transit by 21 applied during early-S in synchronized HeLa cells, and in striking contrast with earlier reports on studies using plant or echinoderm cells. olomoucilnc and compound 21 were unable to reversibly arrest cell cycle progression in asynchronous growing HeLa cells. Some irreversible hlock in GI and G2 phase occurred at high olomoucine concentration, correlated with induced cell death. Moreover, chmronic exposure to lethal doses of compound 21 resulted in massive nuclear fragmentation, evocative of mitotic catastrophe with minour amounts of apoptosis only. It was also found that olomoucine and compound 21 reversibly block the intracellular uptake of nuicleosides with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号