首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular genetics in lower organisms has allowed the elucidation of pathways that modulate the aging process. In certain instances, evolutionarily conserved genes and pathways have been shown to regulate lifespan in mammals as well. Many gene products known to affect lifespan are intimately involved in the control of energy metabolism, including the fuel sensor AMP-activated protein kinase (AMPK). We have shown previously that over-expression of an AMPK alpha subunit in Caenorhabditis elegans, designated aak-2, increases lifespan. Here we show the interaction of aak-2 with other pathways known to control aging in worms. Lifespan extension caused by daf-2/insulin-like signaling mutations was highly dependent on aak-2, as was the lifespan extension caused by over-expression of the deacetylase, sir-2.1. Similarly, there was partial requirement for aak-2 in lifespan extension by mitochondrial mutations (isp-1 and clk-1). Conversely, aak-2 was not required for lifespan extension in mutants lacking germline stem cells (glp-1) or mutants of the eating response (eat-2). These results show that aging is controlled by overlapping but distinct pathways and that AMPK/aak-2 represents a node in a network of evolutionarily conserved biochemical pathways that control aging.  相似文献   

2.
PDGF acts as an autocrine and paracrine factor in certain tumors through upregulation of the PDGF beta-receptor expression. In order to elucidate the control mechanism for the receptor expression, we have isolated an enhancer from two P1 clones that together contain a 102 kb NotI region covering the entire human PDGFRB gene. They were partially digested with TspI and cloned into the PDGFRB enhancer trap vector to make a library for identification of enhancers. The digested DNA containing enhancer was identified by expression of GFP when transfected in PDGF beta-receptor expressing cells. One of the enhancer clones was further examined by making several deletion mutants in a luciferase vector. This enhancer was most active in neuroblastoma cells, IMR32 and BE2, but less active in hemangioma and in smooth muscle cell lines. Chip assay revealed that SP1, AP2, and GATA2 bound the enhancer in BE2 cells. Their interaction occurred dependently of the cell cycle and synchronously with their binding to the promoter. Transfection of GATA2 alone or with Ets, which binds adjacent to GATA, resulted in differentiation of BE2 cells in parallel with increased PDGF beta-receptor expression. Furthermore, over-expression of the PDGF beta-receptor in BE2 cells induced neurite extension.  相似文献   

3.
The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and β-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY™ vector conversion system. The method can be extended to other species when enhancer trap lines become available.  相似文献   

4.
5.
6.
7.
Reverse Genetic Approaches for Functional Genomics of Rice   总被引:7,自引:0,他引:7  
T-DNA and transposable elements e.g., Ds and Tos17, are used to generate a large number of insertional mutant lines in rice. Some carry the GUS or GFP reporter for gene trap or enhancer trap. These reporter systems are valuable for identifying tissue- or organ-preferential genes. Activation tagging lines have also been generated for screening mutants and isolating mutagenized genes. To utilize these resources more efficiently, tagged lines have been produced for reverse genetic approaches. DNA pools of the T-DNA tagged lines and Tos17 lines have been prepared for PCR screening of insertional mutants in a given gene. Tag end sequences (TES) of the inserts have also been produced. TES databases are beneficial for analyzing the function of a large number of rice genes.  相似文献   

8.
Ethosuximide is a medication used to treat seizure disorders in humans, and we previously demonstrated that ethosuximide can delay age-related changes and extend the lifespan of the nematode Caenorhabditis elegans. The mechanism of action of ethosuximide in lifespan extension is unknown, and elucidating how ethosuximide functions is important for defining endogenous processes that influence lifespan and for exploring the potential of ethosuximide as a therapeutic for age-related diseases. To identify genes that mediate the activity of ethosuximide, we conducted a genetic screen and identified mutations in two genes, che-3 and osm-3, that cause resistance to ethosuximide-mediated toxicity. Mutations in che-3 and osm-3 cause defects in overlapping sets of chemosensory neurons, resulting in defective chemosensation and an extended lifespan. These findings suggest that ethosuximide extends lifespan by inhibiting the function of specific chemosensory neurons. This model is supported by the observation that ethosuximide-treated animals displayed numerous phenotypic similarities with mutants that have chemosensory defects, indicating that ethosuximide inhibits chemosensory function. Furthermore, ethosuximide extends lifespan by inhibiting chemosensation, since the long-lived osm-3 mutants were resistant to the lifespan extension caused by ethosuximide. These studies demonstrate a novel mechanism of action for a lifespan-extending drug and indicate that sensory perception has a critical role in controlling lifespan. Sensory perception also influences the lifespan of Drosophila, suggesting that sensory perception has an evolutionarily conserved role in lifespan control. These studies highlight the potential of ethosuximide and related drugs that modulate sensory perception to extend lifespan in diverse animals.  相似文献   

9.
10.
We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the beta-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS expression phenotypes are dominant and are scored in primary transformants, this system does not require rounds of sexual recombination, a typical barrier to developmental genetic studies in trees. Gene and enhancer trap lines defining genes expressed during primary and secondary vascular development were identified and characterized. Collectively, the vascular gene expression patterns revealed that approximately 40% of genes expressed in leaves were expressed exclusively in the veins, indicating that a large set of genes is required for vascular development and function. Also, significant overlap was found between the sets of genes responsible for development and function of secondary vascular tissues of stems and primary vascular tissues in other organs of the plant, likely reflecting the common evolutionary origin of these tissues. Chromosomal DNA flanking insertion sites was amplified by thermal asymmetric interlaced PCR and sequenced and used to identify insertion sites by reference to the nascent Populus trichocarpa genome sequence. Extension of the system was demonstrated through isolation of full-length cDNAs for five genes of interest, including a new class of vascular-expressed gene tagged by enhancer trap line cET-1-pop1-145. Poplar gene and enhancer traps provide a new resource that allows plant biologists to directly reference the poplar genome sequence and identify novel genes of interest in forest biology.  相似文献   

11.
SNZ1, a member of a highly conserved gene family, was first identified through studies of proteins synthesized in stationary-phase yeast cells. There are three SNZ genes in Saccharomyces cerevisiae, each of which has another highly conserved gene, named SNO (SNZ proximal open reading frame), upstream. The DNA sequences and relative positions of SNZ and SNO genes have been phylogenetically conserved. This report details studies of the expression of the SNZ-SNO gene pairs under various conditions and phenotypic analysis of snz-sno mutants. An analysis of total RNA was used to determine that adjacent SNZ-SNO gene pairs are coregulated. SNZ2/3 and SNO2/3 mRNAs are induced prior to the diauxic shift and decrease in abundance during the postdiauxic phase, when SNZ1 and SNO1 are induced. In snz2 snz3 mutants, SNZ1 mRNA is induced prior to the diauxic shift, when SNZ2/3 mRNAs are normally induced. Under nitrogen-limiting conditions, SNZ1 mRNAs accumulate in tryptophan, adenine, and uracil auxotrophs but not in prototrophic strains, indicating that induction occurs in response to the limitation of specific nutrients. Strains carrying deletions in all SNZ-SNO gene pairs are viable, but snz1 and sno1 mutants are sensitive to 6-azauracil (6-AU), an inhibitor of purine and pyrimidine biosynthetic enzymes, and methylene blue, a producer of singlet oxygen. The conservation of sequence and chromosomal position, the coregulation and pattern of expression of SNZ1 and SNO1 genes, and the sensitivity of snz1 and sno1 mutants to 6-AU support the hypothesis that the associated proteins are part of an ancient response to nutrient limitation.  相似文献   

12.
Hughes SE  Huang C  Kornfeld K 《Genetics》2011,189(1):341-356
Aging is an important feature of animal biology characterized by progressive, degenerative changes in somatic and reproductive tissues. The rate of age-related degeneration is genetically controlled, since genes that influence lifespan have been identified. However, little is known about genes that affect reproductive aging or aging of specific somatic tissues. To identify genes that are important for controlling these degenerative changes, we used chemical mutagenesis to perform forward genetic screens in Caenorhabditis elegans. By conducting a screen focused on somatic aging, we identified mutant hermaphrodites that displayed extended periods of pharyngeal pumping, body movement, or survival. One of these mutations is a novel allele of the age-1 gene. age-1 encodes a phosphatidylinositol-3-kinase (PI3K) that functions in the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway. age-1(am88) creates a missense change in the conserved PIK domain and causes dramatic extensions of the pharyngeal pumping and body movement spans, as well as a twofold extension of the lifespan. By conducting screens focused on reproductive aging in mated hermaphrodites, we identified mutants that displayed increased progeny production late in life. To characterize these mutations, we developed quantitative measurements of age-related morphological changes in the gonad. The am117 mutation delayed age-related declines in progeny production and morphological changes in the gonad. These studies provide new insights into the genetic regulation of age-related degenerative changes in somatic and reproductive tissues.  相似文献   

13.
14.
P D Harvie  M Filippova  P J Bryant 《Genetics》1998,149(1):217-231
We have used an enhancer-trap approach to begin characterizing the function of the Drosophila endocrine system during larval development. Five hundred and ten different lethal PZ element insertions were screened to identify those in which a reporter gene within the P element showed strong expression in part or all of the ring gland, the major site of production and release of developmental hormones, and which had a mutant phenotype consistent with an endocrine defect. Nine strong candidate genes were identified in this screen, and eight of these are expressed in the lateral cells of the ring gland that produce ecdysteroid molting hormone (EC). We have confirmed that the genes detected by these enhancer traps are expressed in patterns similar to those detected by the reporter gene. Two of the genes encode proteins, protein kinase A and calmodulin, that have previously been implicated in the signaling pathway leading to EC synthesis and release in other insects. A third gene product, the translational elongation factor EF-1alpha F1, could play a role in the translational regulation of EC production. The screen also identified the genes couch potato and tramtrack, previously known from their roles in peripheral nervous system development, as being expressed in the ring gland. One enhancer trap revealed expression of the gene encoding the C subunit of vacuolar ATPase (V-ATPase) in the medial cells of the ring gland, which produce the juvenile hormone that controls progression through developmental stages. This could reveal a function of V-ATPase in the response of this part of the ring gland to adenotropic neuropeptides. However, the gene identified by this enhancer trap is ubiquitously expressed, suggesting that the enhancer trap is detecting only a subset of its control elements. The results show that the enhancer trap approach can be a productive way of exploring tissue-specific genetic functions in Drosophila.  相似文献   

15.
This study used a replicative lifespan assay of K6001 yeast to screen anti-aging food factors in commercial flavonoids. Hesperidin derived from the Citrus genus extended the lifespan of yeast at doses of 5 and 10 μM as compared with the control group (p<0.01, p<0.01). Reactive oxygen species (ROS), real-time PCR (RT-PCR), and lifespan assays of uth1 and skn7 mutants with the K6001 background were used to study the anti-aging mechanisms in yeast. The results indicate that hesperidin significantly inhibits the ROS of yeast, and UTH1 gene expression, and that SKN7 gene are involved in hesperidin-mediated lifespan extension. Further, increases in the Sir2 homolog, SIRT1 activity, and SOD gene expression were confirmed at doses of 5 (p<0.01) and 10 μM (p<0.05). This suggests that Sir2, UTH1 genes, and ROS inhibition after administration of hesperidin have important roles in the anti-aging effects of yeast. However, the aglycon hesperetin did not exhibit anti-aging effects in yeast.  相似文献   

16.
Studies on the development of the R7 photoreceptor in the Drosophila eye thus far have identified three genes that specifically affect this cell: sevenless, boss and sina. In each of these mutants the R7 precursor develops instead as the equatorial cone cell (EQC). We have isolated an enhancer trap line, H214, in which beta-galactosidase is primarily expressed in the R7 cell throughout its development. In mutations of sevenless, boss and sina, expression in H214 is initially reduced although still present in the R7 precursor and persists in the EQC into which it develops. The EQC in wild type never expresses lacZ in H214. This result is in contrast to that seen with other enhancer trap lines that display expression in R7, and indicates that some aspect of R7 differentiation is independent of the genetic pathway(s) involving sevenless, boss and sina.  相似文献   

17.
The sorting nexin (SNX) protein family is implicated in the regulation of receptor degradation and membrane traffic in the cell. With the aim of identifying novel genes involved in receptor degradation and recycling, we have cloned a new member of the sorting nexin gene family, human sorting nexin L, SNX-L (or SNX21). This gene includes 4 exons and 3 introns, and is located on chromosome 20q12-13.1 region, encompassing 8 kb. The full-length cDNA of SNX-L is 1,811 bp, with an open reading frame of 1,092 bp. The protein consists of 364 amino acids and encodes a 40 kDa protein. The SNX-L protein has a common PX domain shared by all SNX family members. The similarity of SNX-L PX domain to the PX consensus sequence is over 40%. PX domains have been shown to associate with specific phospholipids and membrane compartments. Expression analysis of SNX-L mRNA indicates that SNX-L is distinctly and highly expressed in fetus liver, but only weakly expressed in brain, muscle (skeleton muscle, smooth muscle, and cardiac muscle), kidney, and adrenal gland. Strong liver expression of SNX-L is maintained from 12 to 25 weeks during human fetus development, suggesting that SNX-L may be a regulatory gene involved in receptor protein degradation during embryonic liver development.  相似文献   

18.
In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.  相似文献   

19.
Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA “bar-code” sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Δ mutant and exacerbated by a short-lived atg16Δ autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号