首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micro‐organisms play critical roles in many important biogeochemical processes in the Earth's biosphere. However, understanding and characterizing the functional capacity of microbial communities are still difficult due to the extremely diverse and often uncultivable nature of most micro‐organisms. In this study, we developed a new functional gene array, GeoChip 4, for analysing the functional diversity, composition, structure, metabolic potential/activity and dynamics of microbial communities. GeoChip 4 contained approximately 82 000 probes covering 141 995 coding sequences from 410 functional gene families related to microbial carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, bacteriophage and virulence. A total of 173 archaeal, 4138 bacterial, 404 eukaryotic and 252 viral strains were targeted, providing the ability to analyse targeted functional gene families of micro‐organisms included in all four domains. Experimental assessment using different amounts of DNA suggested that as little as 500 ng environmental DNA was required for good hybridization, and the signal intensities detected were well correlated with the DNA amount used. GeoChip 4 was then applied to study the effect of long‐term warming on soil microbial communities at a Central Oklahoma site, with results indicating that microbial communities respond to long‐term warming by enriching carbon degradation, nutrient cycling (nitrogen and phosphorous) and stress response gene families. To the best of our knowledge, GeoChip 4 is the most comprehensive functional gene array for microbial community analysis.  相似文献   

2.
为了更好地从肠道微生物组中挖掘新的次级代谢产物、了解肠道微生物组编码的抗生素耐药基因和毒力因子情况,本研究基于4 644株人体肠道微生物代表菌的基因组序列,对其编码的次级代谢产物基因簇、抗生素耐药基因和毒力因子进行了预测分析。经antiSMASH预测分析发现,超过60%的代表菌编码至少1个次级代谢产物基因簇,并从8个未可培养菌中发现了8个潜在的新颖次级代谢产物基因簇。人体肠道中的次级代谢产物主要由梭菌纲(Clostridia)、芽孢杆菌纲(Bacilli)、γ-变形菌纲(Gammaproteobacteria)、拟杆菌纲(Bacteroidia)、放线菌纲(Actinobacteria)和厚壁菌纲(Negativicutes)6类细菌编码的非核糖体多肽合成酶(nonribosomal peptide synthetase,NRPS)、细菌素、芳基多烯类化合物、萜烯、β-丙内酯、NRPS-样蛋白组成。经PathoFact预测分析发现,抗生素耐药基因和毒力因子在代表性菌株中分布广泛,但潜在病原菌编码频率更高。潜在病原菌中编码外膜蛋白、PapC N-端结构域、PapC C-端结构域、肽酶M16失活结构域等分泌型毒素和硝基还原酶家族、AcrB/AcrD/AcrF家族、PLD-样结构域、Cupin结构域、假定溶血素、S24-样肽酶、磷酸转移酶家族、内切核酸酶/外切核酸酶/磷酸酶家族、乙二醛酶/博莱霉素抗性等非分泌型毒素的频率较高。该研究将为进一步从肠道微生物组中挖掘新的微生物天然产物、了解肠道微生物的定殖与感染机制,为肠道微生物相关疾病提供靶向防治策略等奠定基础。  相似文献   

3.
Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities.  相似文献   

4.
AIMS: To develop a DNA microarray for analysis of genes encoding resistance determinants to erythromycin and the related macrolide, lincosamide and streptogramin B (MLS) compounds. METHODS AND RESULTS: We developed an oligonucleotide microarray containing seven oligonucleotide probes (oligoprobes) for each of the six genes (ermA, ermB, ermC, ereA, ereB and msrA/B) that account for more than 98% of MLS resistance in Staphylococcus aureus clinical isolates. The microarray was used to test reference and clinical S. aureus and Streptococcus pyrogenes strains. Target genes from clinical strains were amplified and fluorescently labelled using multiplex PCR target amplification. The microarray assay correctly identified the MLS resistance genes in the reference strains and clinical isolates of S. aureus, and the results were confirmed by direct DNA sequence analysis. Of 18 S. aureus clinical strains tested, 11 isolates carry MLS determinants. One gene (ermC) was found in all 11 clinical isolates tested, and two others, ermA and msrA/B, were found in five or more isolates. Indeed, eight (72%) of 11 clinical isolate strains contained two or three MLS resistance genes, in one of the three combinations (ermA with ermC, ermC with msrA/B, ermA with ermC and msrA/B). CONCLUSIONS: Oligonucleotide microarray can detect and identify the six MLS resistance determinants analysed in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that microarray-based detection of microbial antibiotic resistance genes might be a useful tool for identifying antibiotic resistance determinants in a wide range of bacterial strains, given the high homology among microbial MLS resistance genes.  相似文献   

5.
Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount?a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in?vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens.  相似文献   

6.
Development of functional gene microarrays for microbial community analysis   总被引:1,自引:0,他引:1  
Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus and metals, virulence and antibiotic resistance, biodegradation of environmental contaminants, and stress responses. FGAs have been demonstrated to be a specific, sensitive, and quantitative tool for rapid analysis of microbial communities from different habitats, such as waters, soils, extreme environments, bioreactors, and human microbiomes. In this review, we first summarize currently reported FGAs, and then focus on the FGA development. We will also discuss several key issues of FGA technology as well as challenges and directions in future FGA development.  相似文献   

7.
The main objective of this work was to investigate the biosafety of Enterococcus italicus, a recently described enterococcal species widely diffused in dairy products. For this purpose, the antibiotic susceptibility and the incidence of virulence factors among 30 E. italicus isolates originating mainly from different Italian cheeses were tested. Although not all 30 isolates showed unique genotypes, PCR fingerprinting evidenced a notable genotypic diversity among the E. italicus collection under study. All isolates were susceptible to vancomycin, gentamicin, erythromycin, ampicillin, chloramphenicol and bacitracin. Five isolates corresponding to three unique genotypes exhibited phenotypic resistance to tetracycline with MICs ranging from 64-256mug/ml. By PCR-based detection, the genetic basis of the Tet(R) phenotype in these strains was linked to the tet(S) gene whereas detection of tet(L) and tet(M) genes and the integrase element int of the Tn916/Tn1545 family of transposons were negative. Likewise, none of the strains appeared to contain any of the tested virulence genes gelE, asaI, cpd, agg, cylA, cylB, cylM, ace and hyl(Efm). The results of this study warrant further research into the environmental dissemination of Tet(R)E. italicus and into the potential transferability of its tet(S) genes.  相似文献   

8.
Despite the availability of many culture-based antibiotic screening methods, the lack of sensitive automated methods to identify functional molecules directly from microbial cells still limits the search for new biologically active compounds. The effectiveness of antibiotic detection is influenced by the solubility of the assayed compounds, indicator strain sensitivity, culture media and assay configuration. We describe a qualitative high throughput screening system for detecting cell-perturbing molecules from bacterial colonies employing two opposed agar layers sequentially formed in prototype Society for Biomolecular Screening (SBS) plates, named Janus plates. Direct assay of microbial colonies against target organisms in opposed agar layers overcomes some of the limitations of agar overlay methods. The system enables the rapid detection of extracellular cell-perturbing molecules, e.g., antibiotics, excreted directly from environmental isolates. The source bacterial colonies remain separate from the target organism. The growth layer is prepared and grown independently, so environmental strains can be grown for longer intervals, at temperatures and in media that favor their growth and metabolite expression, while the assay layer with pathogens, usually requiring nutrient-rich medium and elevated temperatures, are added later. Colonies to be tested can be precisely arrayed on the first agar surface, thus avoiding dispersion and disturbance of potential antibiotic-producing colonies by overlaying agar with the target strain. The rectangular SBS configuration facilitates factorial replication of dense microbial colony arrays for testing with multiple assays and assay conditions employing robotic colony pickers and pin tools. Opposed agar layers only slightly reduced the effectiveness for detecting growth inhibition from pure antibiotics compared to single-layer agar diffusion assays. The Janus plate enabled an automation-assisted workflow where a lone operator can effectively identify and accumulate bioactive soil bacterial strains within a few weeks. We also envisage the method’s utility for functional prescreening colonies of clones from genomic and metagenomic libraries or improved strains originating from mutagenized cells.  相似文献   

9.
KM Singh  SJ Jakhesara  PG Koringa  DN Rank  CG Joshi 《Gene》2012,507(2):146-151
A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.  相似文献   

10.
The development of a method to create defined mutants of Leishmania parasites lacking foreign genes conferring resistance to antibiotics has both experimental and practical applications. Mutants deficient in specific virulence genes have potential as attenuated live vaccines, but these can only be of clinical relevance if the antibiotic resistance genes used for selection of the mutants are subsequently removed. In addition, the limited number of antibiotic resistance genes that can be used for genetic manipulation of Leishmania means that a system for recycling them for subsequent use would be highly beneficial when multiple genetic modifications are wanted. In the method we report here, a cassette carrying in tandem the hygromycin resistance gene as a positive marker and thymidine kinase gene as a negative marker is first integrated into the locus of interest and then replaced by a null targeting fragment containing no exogenous DNA. The application of this hit-and-run strategy for removal of one allele of the CPB cysteine peptidase gene array of Leishmania infantum is described.  相似文献   

11.
为了解产志贺毒素大肠埃希菌 (Shigatoxin producingEscherichiacoli ,STEC)stx1,stx2 ,eaeA ,hlyA 4种毒力基因的分布情况 ,以及分离株对 18种抗生素的敏感性 ,采用多重PCR(multiplexPCR ,mPCR)法对分离株进行毒力基因的分子生物学鉴定 ;用WHO推荐的K B法对分离株进行抗生素的敏感性测定。产志贺毒素的大肠埃希菌共有 4 6株 ,其中 2种毒素均产生的有 2 2株 (4 7.8% ) ;单纯产生stx1的有 16株 (36 .9% ) ,stx2 的有 8株 (17.4 % ) ;4种毒力基因均存在的有 19株 (4 1.3% ) ,血清型为O15 7∶H7,而非O15 7∶H7血清型的菌株 (2 3/46 )中 ,4种毒力基因同时存在的仅有 3株 (6 .6 % ) ,但有 13株 (5 6 .9% )hlyA基因阳性。全部STEC对复方新诺明耐药 ,对链霉素耐药率为 2 8.3% ,氨苄西林为 30 .4 % ,红霉素为 6 9.6 % ,而且有 5株对至少 4种以上抗生素多重耐药 ,耐药谱为复方新诺明 链霉素 红霉素 氨苄西林。非O15 7型STEC耐药菌次为 12 2 ,而O15 7型为 6 3。可见 ,mPCR法可以快速检测STEC特征性毒力基因 ,以判定其致病性能。非O15 7型STEC对抗生素较易形成耐药性。  相似文献   

12.
The ever‐growing use of pharmaceutical compounds, including antibacterial substances, poses a substantial pollution load on the environment. Such compounds can compromise water quality, contaminate soils, livestock and crops, enhance resistance of microorganisms to antibiotic substances, and hamper human health. We report the construction of a novel panel of genetically engineered Escherichia coli reporter strains for the detection and classification of antibiotic substances. Each of these strains harbours a plasmid that carries a fusion of a selected gene promoter to bioluminescence (luxCDABE) reporter genes and an alternative tryptophan auxotrophy‐based non‐antibiotic selection system. The bioreporter panel was tested for sensitivity and responsiveness to diverse antibiotic substances by monitoring bioluminescence as a function of time and of antibiotic concentrations. All of the tested antibiotics were detected by the panel, which displayed different response patterns for each substance. These unique responses were analysed by several algorithms that enabled clustering the compounds according to their functional properties, and allowed the classification of unknown antibiotic substances with a high degree of accuracy and confidence.  相似文献   

13.
The first part of the study presents the resistance profiles of 14 selected antibiotic agents for 180 clinical E. faecalis strains. Distribution of virulence factors for tested strains were characterized using PCR method. The results proved that clinical fluoroquinolone resistant E. faecalis strains possess MDR (multidrug-resistant) phenotype and presence of 7-8 tested virulence determinants.  相似文献   

14.
Development of quantitative PCR (QPCR) assays typically requires extensive screening within and across a given species to ensure specific detection and lucid identification among various pathogenic and nonpathogenic strains and to generate standard curves. To minimize screening requirements, multiple virulence and marker genes (VMGs) were targeted simultaneously to enhance reliability, and a predictive threshold cycle (C(T)) equation was developed to calculate the number of starting copies based on an experimental C(T). The empirical equation was developed with Sybr green detection in nanoliter-volume QPCR chambers (OpenArray) and tested with 220 previously unvalidated primer pairs targeting 200 VMGs from 30 pathogens. A high correlation (R(2) = 0.816) was observed between the predicted and experimental C(T)s based on the organism's genome size, guanine and cytosine (GC) content, amplicon length, and stability of the primer's 3' end. The performance of the predictive C(T) equation was tested using 36 validation samples consisting of pathogenic organisms spiked into genomic DNA extracted from three environmental waters. In addition, the primer success rate was dependent on the GC content of the target organisms and primer sequences. Targeting multiple assays per organism and using the predictive C(T) equation are expected to reduce the extent of the validation necessary when developing QPCR arrays for a large number of pathogens or other targets.  相似文献   

15.
AIMS: To develop and employ a PCR amplification system, directly from clinical specimens, for the rapid molecular detection of common antimicrobial resistance genes for streptococci, staphylococci and enterococci organisms causing infective endocarditis (IE). METHODS AND RESULTS: Eleven antibiotic resistance genes were targeted by PCR along with four identification-related loci. Blood culture and heart valve material from staphylococcal endocarditis patients were directly examined for methicillin resistance. PCR conditions were optimized for the following antibiotic resistance loci: staphylococci (mecA, aacA-aphD), streptococci (PBP 1A, PBP 2B, gyrB, parE) and enterococci (vanA, vanB, vanC-1, vanC-2, aacA-aphD, aphA3). The presence of methicillin resistance was confirmed in one of the eight IE patients examined. CONCLUSION: This study presents a PCR amplification system for the detection of antibiotic resistance genes. Detection of such genes may indicate susceptibility of the causal agents of IE to commonly prescribed antimicrobial agents. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid detection of antibiotic resistant organisms may reduce the use of inappropriate antibiotic agents or enable the use of the most appropriate combinations of antibiotics, other than those that would normally be prescribed empirically for IE. Such a method may be particularly valuable in cases of culture-negative endocarditis. Detection of antibiotic resistance genes by molecular-based techniques, namely PCR, will allow more directed antibiotic therapy and may also provide opportunities for earlier identification of resistant organisms.  相似文献   

16.
规律成簇间隔的短回文重复序列 (Clustered regularly interspaced short palindromic repeats,CRISPR) 与其相关蛋白基因系统可通过限制基因的水平转移而有效防御噬菌体等外源基因元件的入侵,不同细菌之间的CRISPR结构有所差异。基于CRISPR系统的差异性,文中对近几年CRISPR在食源性致病菌进化分析、检测与分型、毒力与耐药中的应用研究进行概述,并对基于CRISPR序列特点开发的细菌检测分型方法以及CRISPR与食源性致病菌的毒力、耐药性之间的相关性进行重点总结分析。此外,文中探讨了CRISPR在进化分析、检测与分型、毒力与耐药应用中的不足,提出将CRISPR分型方法标准化、完善与扩充致病菌CRISPR数据库、进一步探究噬菌体与细菌之间的共进化关系等建议,为进一步探索CRISPR功能提供参考。  相似文献   

17.
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.  相似文献   

18.
[目的] 为探讨我国华南沿海海水养殖鱼类病原菌美人鱼发光杆菌的非典型毒力基因和耐药性的时空变化,解析影响其毒力和耐药性变化的可能环境因素,为该菌所引起的病害防控提供建议。[方法] 本研究以分离自我国广东和海南沿海患病海水鱼的35株美人鱼发光杆菌为研究对象,利用普通PCR扩增技术,分析5个非典型毒力基因在菌株中的分布情况,并采用纸片扩散法(K-B)分析菌株对15种抗生素的耐药性。[结果] 19株菌含有1–2个被检测的非典型毒力基因,尤其是hlyA和vvh的检出率均高于20%。35株菌多重耐药指数为0.00–0.67,表现出27种耐药谱,多重耐药率(菌株耐抗生素种类>3)达到60.00%,尤其对万古霉素、阿莫西林、麦迪霉素和利福平的耐药率均高于50%,但对庆大霉素、诺氟沙星、环丙沙星、氯霉素和氟苯尼考的耐药率均低于10%。非典型毒力基因含量和耐药性,呈现一定的随年份增加而增强以及海南>广东的时空差异,尤其是耐药性中的谱型丰富度、多重耐药率、某一菌株的最多耐药数量以及多重耐药指数,海南(分别是1.00,69.23%,10,0.32)均大于广东(分别是0.82,54.55%,9,0.25)。[结论] 美人鱼发光菌的非典型毒力基因可能是通过水平基因转移获得,海南与广东区域美人鱼发光菌毒力基因与耐药的差异主要受到温度和抗生素使用的影响。  相似文献   

19.
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.  相似文献   

20.
The aims of this research were to evaluate the safety and probiotic potential of Enterococcus spp. strains and select novel strains for future development of new functional fermented products. Bile salt hydrolase (BSH) activity, capacity of auto-aggregation and co-aggregation, hydrophobicity, tolerance to different pH values and NaCl content, mucin degradation, and antibiotic susceptibility were evaluated. Considering the preliminary probiotic features and safety, the strains were selected for complementary tests: tolerance to gastrointestinal tract (GIT) conditions, adhesion to Caco-2 cells and β-galactosidase activity, and presence of genes encoding virulence factors, antibiotic resistance, and biogenic amines were also performed for the selected strains. Enterococcus faecium SJRP20 and SJRP65 resisted well to the GIT conditions, presented low adhesion property, produced β-galactosidase although they did not present genes implicated in adhesion, aggregation, and colonization. Enterococcus faecium SJRP65 showed fewer genes related to antibiotic resistance and virulence factors and presented good functional properties, with interesting features for future application in dairy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号