首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of ichthyoplankton surveys conducted in 2007–2008 showed that waters off Southwest Kamchatka and North Kuril Islands were areas of mass spawning of walleye pollock. The peak spawning occurred during the last 10 days of April and in early May, which was much later than the peak at the main spawning site off West Kamchatka. The spawning activity of walleye pollock near the southwestern shores of Kamchatka is a regular event, as the analysis of archive materials shows. This gave us grounds to suspect the existence of a southern site that coincided well with the mass spawning in the Shelikhov Gulf in its timing and scale, but was missed during standard ichthyoplankton surveys conducted in early April. After analyzing the growth rates of spawners, the assumption was made that the southern spawning was performed by the East Kamchatkan walleye pollock population, whose mass spawning usually occurs in late April-early May. According to the data of 2008, the estimated biomass of walleye pollock spawning in the area of the Ozernovskaya basin in late April was nearly 600000 tons. Regular monitoring of the southern spawning is proposed by means of additional ichthyoplankton surveys south of 53° N, including the Okhotsk Sea waters of the North Kuril Islands, in late April—early May.  相似文献   

2.
Geographic and interannual variability of the number of annuli and the radius of the first scale annulus, as well as the retrospective length of year-old walleye pollock from the western, northern, and eastern parts of the Bering Sea, was examined using data for the years 1995, 1996, 1998, and 1999. The characteristics of the first scale annulus were varying. By these parameters, walleye pollock from the western Bering Sea significantly differs statistically from walleye pollock of the eastern Bering Sea. With respect to number of annuli, the radius of the first ring, and the retrospective length of year-old specimens, the walleye pollock from the Navarinskii region occupies an intermediate position between fish from the western and eastern parts of the Bering Sea. Interannual variability of the three parameters was found for walleye pollock from the Navarinskii region.  相似文献   

3.

Background  

The walleye pollock (Theragra chalcogramma) and Norwegian pollock (T. finnmarchica) are confined to the North Pacific and North Atlantic Oceans, respectively, and considered as distinct species within the family Gadidae. We have determined the complete mtDNA nucleotide sequence of two specimens of Norwegian pollock and compared the sequences to that of 10 specimens of walleye pollock representing stocks from the Sea of Japan and the Bering Sea, 2 specimens of Atlantic cod (Gadus morhua), and 2 specimens of haddock (Melanogrammus aeglefinus).  相似文献   

4.
In the northern Sea of Okhotsk, nekton and jellyfish consumed as many as 831 × 109 walleye pollock eggs per day in 2011. The nekton exerted the highest pressure, viz., 98.3% of the overall predation on pollock egg by aquatic animals. Of the entire quantity of consumed eggs, 55.9% were eaten by herring, 35.9% by walleye pollock, 6.5% by Sakhalin sole, and 1.7% by jellyfish. Among jellyfish, scyphomedusae Cyanea capillata and Chrysaora melonaster, as well as the hydromedusa Tima sachalinensis consumed the largest quantities of eggs. The total consumption of pollock egg by aquatic animals in 2011 was estimated at 42.4 × 1012, or 11.4% of the entire quantity of eggs that were spawned by walleye pollock in the waters of the northern part of the sea. The total amount of pollock eggs that were eaten by herring and pollock together for 51 days in 2011 amounted to 38.9 × 1012, which was 5.7 times as much as that in 2002. Thus, a significant growth of predation on pollock eggs by their main consumers, viz., herring and walleye pollock, was observed in 2011. This was caused by an increase in the populations of both species during the recent years and also by a higher concentration of pollock eggs.  相似文献   

5.
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.  相似文献   

6.
The respiration rate and swimming activity of walleye pollock (Theragra chalcogramma) larvae were measured in the laboratory to determine how these were affected by body size (measured as dry weight), and amount of light. Size influenced respiration rates, but not activity. Activity increased with increased light, and as walleye pollock larvae developed, light had an increasingly important effect on respiration rate. For older larvae, light is an important factor affecting respiration rate and this may be due to an increased sensitivity to light. Thus, in addition to size, light plays an important role in the energetics of walleye pollock larvae.  相似文献   

7.
根据鄂霍茨克公海区狭鳕资源声学评估调查资料,研究了狭鳕分布状况及渔场环境特征,并分析了狭鳕行动分布与环境的关系.结果表明,8月公海区狭鳕密集群位于55°N以北、水深小于500m的海域,其主要分布水层在150~300m之间;调查期间狭鳕只为索饵群体,主要摄食太平洋磷虾,狭鳕密集区一般也为太平洋磷虾高密度分布区;8月公海区水温跃层大致在0~50m之间,强度为0.25℃  相似文献   

8.
After 30 years of intensive walleye pollock fishing in the Sea of Japan and the Sea of Okhotsk, the average number of vertebrae has increased significantly in the caudal section of the spinal column. The maximum frequency of occurrence of “multivertebrae” phenotype (33 caudal vertebrae) has increased from 3–5 to 76–78%. The number and frequency of occurrence of the abdominal vertebrae did not change. Experimental testing of walleye pollock on its ability to resist the flow justifies our suggestion that the number of vertebrae in the caudal section is an important adaptive feature. We argue that the changes in phenotypic structure of the studied population are the result of intensive fishing.  相似文献   

9.
Both the number of exposed SH-groups and the rate of reaction with 5,5'dithiobis-2-nitrobenzoic acid (DTNB) in walleye pollock and bovine rhodopsin depend on a degree of native structure of the preparation to be investigated. The preparations studied can be arranged in the order of increase of these parameters as follows: ROS less than rhodopsin extracted by digitonin less than triton X-100 less than cetyltrimethylammonium bromide (CTAB) less than sodium dodecylsulphate (SDS). After illumination of ROS and digitonin, triton X-100 and CTAB-solubilized rhodopsin, and increase was observed in the number of modified SH-groups. Dark and bleached samples of walleye pollock rhodopsin exhibited a faster rate reaction and a more number of modified SH-groups as compared to bovine preparation. The differences between bovine and walleye pollock preparation disappeared after complete opsin unfolding as a result ROS solubilization in SDS. Six SH-groups per molecule of rhodopsin were modified in both preparation under these conditions. No differences in the number of cysteine residues (10--11), disulfide groups (2), acid (35--40) and base (25--30) titratable groups per rhodopsin molecule were found between bovine and walleye pollock ROS membranes. The isoelectric point of both rhodopsin preparations was within the pH range 5.2--5.6. After proteolysis of ROS with papain, a fragment with molecular weight 24500 +/- 1000 was detected, which contained the same number of SH-groups and cysteine residues as in the case of intact rhodopsin. The results obtained suggest that, in spite of a similar primary structure, the walleye pollock visual pigment has more "loose" and "fluid" space packing in the ROS membrane than the bovine pigment.  相似文献   

10.
Walleye pollock Theragra chalcogramma Pallas occupies a central place in ecosystems of the North Pacific and is an important target species of fisheries. The species is characterized by daily vertical, spawning, feeding, and wintering migrations and spawning occurring under the sea ice. Since population structure estimation by the tagging with recapture is inefficient in walleye pollock, the pollock resources are difficult to estimate by conventional methods, requiring population genetic studies with molecular markers. The population genetic structure of five spawning aggregations from the Bering Sea was for the first time studied with ten microsatellite loci: Tch5, Tch10, Tch11, Tch12, Tch14, Tch16, Tch17, Tch19, Tch20, and Tch22. A spatially distant sample from the Sea of Okhotsk was used as a reference group. Polymorphism for the markers reached 100%, and heterozygosity of individual loci ranged from 41 to 95% in different populations. It was shown the aggregations of interest are in goodness-to-fit the Hardy-Weinberg equilibrium (HWE) at hole, while the Sea of Okhotsk sample demonstrated a sex bias: the heterozygosity at Tch16 in males was significantly lower than in females. The highest discriminative power was observed for Tch10, Tch20, and Tch22. F ST genetic distances between populations were typical for marine fishes. A mixed composition was supposed for the sample from the region of the underwater Shirshov Ridge, which serves as a natural partial geographic barrier between the Olyutor-Karagin and Koryak walleye pollock stocks. With the Shirshov sample excluded, F ST scatter plots and the spatial autocorrelation approach supported isolation by distance for the aggregations. An influence of abiotic factors on the population structure was assumed for walleye pollock of the Bering Sea.  相似文献   

11.
The biomass of the walleye pollock (Theragra chalcogramma) stock in waters of Primorskii krai, Sea of Japan, during the 1976–2015 observation period ranged from 48000 to 373000 tons; their number ranged from 99 to 1115 million fish. Four very strong year-classes born in 1975, 1981, 1997, and 2006 have been identified. It has been shown that the duration of the sexual-maturity period is determined by the periodicity of the dynamics of the year-class strength close to the 9-year cycle. According to the results of numerical modeling, an increase in the walleye pollock stock in Primorye is expected from 2017 to 2020.  相似文献   

12.
The spatial distribution of eggs and larvae of the walleye pollock Theragra chalcogramma is considered in respect to dynamics of oceanologic processes, nutrients, chlorophyll а and zooplankton off the northeastern coast of Sakhalin Island in spring 2012. It is shown that the effect of severe temperature regime in the near-bottom horizons in the western Sea of Okhotsk during the spawning period of walleye pollock becomes milder due to specific features of water dynamics. The egg distribution is determined by mesoscale eddies in the region. The species survival depends on the effect of such environmental factors as freshwater discharge from the Amur River, eddy structure in waters of the Sea of Okhotsk, and dynamics of phytoplankton and zooplankton development.  相似文献   

13.
Synopsis Behavioral preference for a structured habitat (artificial seagrass) by juvenile walleye pollock,Theragra chalcogramma, was tested in controlled laboratory experiments. We monitored position of fish in 2000 1 tanks with and without artificial seagrass present in one half of the tank. In addition, we exposed walleye pollock to a predator model, assessing their response when a grass plot was available or unavailable as a potential refuge. In the absence of predators, the fish avoided the artificial seagrass, displaying a preference for the open water side of the experimental tanks. In the presence of a predator model, however, juvenile walleye pollock readily entered the artificial seagrass plots. In addition, they often remained in the grass canopy in proximity to the predator instead of moving out of the grass to avoid the predator (when no grass was present they consistently moved to the opposite side of the tank from the predator). The behavioral choices exhibited in this study suggest that juvenile walleye pollock modify habitat selection in response to perceived predation risk, and recognize the structure provided by artificial seagrass as a potential refuge.  相似文献   

14.
Synopsis The social and reproductive behavior of a group of four male and seven female walleye pollock,Theragra chalcogramma, were observed in a large tank. Pollock spent most of their time swimming in a loose aggregation near the surface. Males descended from the aggregation more often than females to follow and make physical contact with other males as well as with females. The difference between males and females in the frequency of diving in our tank is consistent with the reported pattern of depth segregation of the sexes in natural pollock spawning aggregations. The frequency of social interactions increased when pollock became reproductively active and was higher at night and during twilight when most of the spawning occurred. Male interactions with females most frequently involved physical contact, while male interactions with other males were more often limited to following. There was no indication that male-male interactions result in the formation of stable social dominance relationships that determine priority of access to mates, as has been suggested previously for walleye pollock. Rather, following and contact interactions appear to promote male identification of potential mates and encounters with ripe females. The possible functional significance of male social interactions is discussed in relation to reports on natural walleye pollock spawning aggregations.  相似文献   

15.
In tissues of the walleye pollock Theragra chalcogramma the dry matter content averages 18.5%. The lipid content of the raw material is 0.7%, the protein content is 15.3%, carbohydrates are 0.6%, and ash is 1.3%. The average calorie density is 940 cal/g wet weight and 5080 cal/g dry weight. The dry matter content of gonads varies within 14.9–28.0% in females and 14.5–17.0% in males. The lipid content of the raw material is 0.9–3.0% in females and 1.3–1.8% in males; the protein content is 10.2–21.5% and 10.7–13.4%, respectively. The calorie density of female gonads is 702–1537 cal/g wet weight and 4426–5482 cal/g dry weight; for the male gonads it is 760–960 cal/g wet weight and 4952–5641 cal/g dry weight. The dry matter content of the liver varies within 42.2–62.2% for females and 34.4–62.4 for males. The lipid content of the raw material is 25.6–44.5% for females and 16.6–41.3% for males; the protein content is 6.3–9.8% and 8.1–12.3%, respectively. The calorie density of the liver in females varies within 2918–4601 cal/g wet weight and 6370–7395 cal/g dry weight; in males it is 2291–4357 cal/g wet weight and 6392–7492 cal/g dry weight. The minimum calorie density of the liver is observed in juvenile pollock: 963 cal/g wet weight and 2045 cal/g dry weight. The dry-matter content of feces in different size groups varies within 15.0–18.4%. Values of the average lipid content of raw material range from 1.1 to 1.6%; the protein content is from 1.8 to 3.8% and carbohydrates are from 0.9 to 1.4%. The calorie density of feces from variously-sized walleye pollock varies within a narrow range, from 308 to 362 cal/g wet weight. The energy equivalent ranges, depending on body size, from 259 to 2377 cal. The share of energy concentrated in the somatic (muscle) tissue of variously-sized walleye pollock during ontogenesis constitutes 56.5–93.9%; in female gonads it is 0.9–26.6%; in male gonads it is 0.4–7.3%, in the female liver it is 7.9–27.2%, and in the male liver it is 5.7–26.9%. The amount of energy (cal), concentrated in the female liver and gonads is on average 1.5 and 3 times as high as that in the male liver and gonads, respectively. The maximum total energy loss (15–30%) in mature walleye pollock of various-sizes occurs in the spawning period, during the transition from the maturity stage 5 to stage 6. The total amount of energy accumulated during the lifecycle from small juveniles (<17 cm) to very large individuals (>60 cm) averages 1964 kcal for females and 1465 kcal for males. The difference in the amount of energy is explained by the fact that oogenesis requires more energy than spermatogenesis.  相似文献   

16.
This study examines the feeding habits of the Pacific cod Gadus macrocephalus in waters off the eastern coast of the northern Kuril Islands and southern Kamchatka. In November–December 1996, the cod primarily consumed fish, which made up 47.6% of the total food mass. The proportion of cephalopods, fishery offal discarded from fishing vessels, and decapods did not exceed 18.5, 17.4, and 12.2%, respectively. Among fishes, the main prey item of the cod was atka mackerel (15.4%); among cephalopods, octopus (16.8%); among fishery offal, heads of atka mackerel (14.2%); and among decapods, majid crabs (6.4%). The rather low percentage of walleye pollock (7.3%) in the cod diet was due to the decline of the east-Kamchatka walleye pollock stock.  相似文献   

17.
Synopsis The foraging effectiveness of walleye pollock juveniles, Theragra chalcogramma, was determined experimentally to test the hypothesis that social cues may facilitate the ability of individuals to exploit ephemeral food patches. Fish were tested when isolated, paired with one other fish, and in a group of six fish. Test fish exploited more food patches while in a group of six than when they were isolated. Patch exploitation by paired fish was intermediate to but not statistically different than isolate or grouped treatments. The number of pellets eaten by test fish in a group and a pair was more than 3.5 times that of when they were isolated, although the overall relationship between the amount of food eaten and group size was not statistically significant. Results support the hypothesis that juvenile walleye pollock exploit ephemeral food patches more effectively in the presence of conspecifics. In planktivores such as walleye pollock, social cues may enhance foraging on transient food sources either by facilitating detection of food patches (local enhancement) or by stimulating foraging activity when a food patch is located (social facilitation).  相似文献   

18.
The diet of adult female northern fur seals ( Callorhinus ursinus ) is examined through the analysis of faecal material collected during the summer breeding season at three breeding locations in the Bering Sea: St. Paul Island (1988, 1990) and St. George Island (1988, 1990) of the Pribilof Islands Group (USA), and Medny Island (1990) of the Commander Islands Group (Russia). Prey consumption varies annually and accordingly with the physical and biological environment surrounding each island. Juvenile walleye pollock ( Theragra chalcogramma ) is the most common prey of northern fur seals from St. Paul Island; the island is surrounded by a broad neritic environment with widely separated frontal zones and is the greatest distance from the continental shelf-edge. Gonatid squid ( Gonatopsis borealis/Berryteuthis magister and Gonatus madokail Gonatus middendorffi ) were the most common prey of northern fur seals from Medny Island; the island is surrounded by a compressed neritic environment and is adjacent to the continental shelf-edge and the oceanic marine environment. A combination of walleye pollock and gonatid squid is consumed by northern fur seals from St. George Island; the island has a surrounding oceanographic environment intermediate between the other two islands.
Variability in predation on walleye pollock is consistent with fishery information concerning the relative abundance and availability of walleye pollock around St. George and St. Paul Islands. The abundance and availability of these prey resources during the summer breeding season are key factors which influence the health and growth of the northern fur seal populations in the Bering Sea.  相似文献   

19.
The winter energy deficit and mortality of juvenile walleye pollock at extremely cold temperature were examined by field observations and laboratory experiments. In the Doto area, along the northern coast of Japan, juvenile walleye pollock resided on the continental shelf despite extremely cold temperatures (mean 0·4° C) during the latter half of winter (March to April). Measurements of the rate of energy depletion (equivalent to the routine metabolic rate) revealed that juvenile walleye pollock consumed 37% less energy at 0·5° C than at 2·0° C, suggesting an energetic benefit of residence in cold water (<1·0° C) over the shelf during winter. Prior to the starvation experiments, temperatures and ration level in the holding tanks were adjusted to create two different body condition groups of fish. Under the thermal condition of the latter half of winter (0·5° C), fish with a mean condition factor of 0·6 and 0·5 suffered 19·1 and 74·5% mortality, respectively, at the end of the experiments (after 56 days). The residual analysis of total body energy demonstrated that the cause of mortality was mainly associated with the depletion of energy reserves. When a logistic regression model for mortality derived from the experiments was applied to wild fish collected in March, the estimated overwintering mortality in 2004 and 2005 was 25·4 and <2·3%, respectively, assuming no feeding during the winter. Considering that juvenile walleye pollock feed during winter as shown in previous studies, intense overwintering mortality induced by energy depletion is improbable during the latter half of winter in the Doto area.  相似文献   

20.
Mean whole energy content ( E wb) of age 0 year walleye pollock Theragra chalcogramma was 19.928 KJ g−1 dry mass in 3943 fish collected from different habitats around the Pribilof Islands frontal structure, south-east Bering Sea, during September 1994–1996 and 1999. It varied, however, with habitat type. Fish residing offshore had higher E wb than fish residing inshore of the frontal regions. Age 0 year walleye Pollock E wb changed in a non-linear fashion with fish size, with larger juveniles typically having higher E wb. Size thresholds were identified at which the relationship between age 0 year walleye pollock E wb and L S changed. One such threshold was found at 46 mm where E wb reached a local minimum. Another threshold was found at 80 mm beyond which E wb tended to remain constant with size. Overall mass-length and E wb-length residuals were highly correlated with each other ( r =0.73, P ≪0.0001). The slope of the regression, however, was higher for smaller fish. Possible mechanisms are proposed to explain the observed ontogenetic variation in nutritional status and the role of age 0 year walleye pollock late summer E wb on survival over their first critical winter of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号