首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Influences of alpha 2-adrenoceptor stimulation on adenylate cyclase activity were investigated in cerebral cortical membranes of rats. Pretreatment of the membranes with islet-activating protein and NAD resulted in a significant increase in basal activity as well as in GTP- or forskolin/GTP-induced elevation of adenylate cyclase activity. Strong activation of adenylate cyclase was also caused in membranes pretreated with cholera toxin together with NAD in comparison to that in control membranes, suggesting that adenylate cyclase activity is perhaps regulated by stimulatory and inhibitory GTP binding regulatory protein existing in synaptic membranes. In addition, adrenaline (with propranolol) or clonidine significantly reduced adenylate cyclase activity stimulated by pretreatment with forskolin and GTP. The inhibitory effects of adrenaline were also observed in membranes pretreated with cholera toxin and NAD. Moreover, the inhibition by adrenaline or clonidine was completely abolished by treatment with (a) yohimbine or (b) islet-activating protein and NAD. It is suggested that alpha 2-receptor stimulation causes inhibitory influences on adenylate cyclase activity mediated by the inhibitory GTP binding regulatory protein in synaptic membranes of rat cerebral cortex.  相似文献   

2.
Insulin caused the inhibition of glucagon-stimulated adenylate cyclase activity in liver plasma membranes, but failed to inhibit this activity in liver membranes from rats made diabetic by treatment with either alloxan or streptozotocin. Treatment of streptozotocin-diabetic rats with insulin, to normalize their blood glucose concentrations, restored this action of insulin. Rats treated with the biguanide drug metformin exhibited a decreased content of the inhibitory guanine nucleotide regulatory protein Gi in liver plasma membranes assessed both structurally, by using a specific polyclonal antibody (AS7), and functionally. Treatment of normal rats with metformin did not alter insulin's ability to inhibit adenylate cyclase in liver plasma membranes; however, metformin treatment of streptozotocin-diabetic rats completely restored this inhibitory action of insulin. Liver plasma membranes from streptozotocin-diabetic animals which either had or had not been treated with metformin had contents of Gi which were less than 10% of those seen in control animals. We conclude that: (i) insulin does not inhibit adenylate cyclase activity through the inhibitory guanine nucleotide regulatory protein Gi; (ii) streptozotocin- and alloxan-induced diabetes elicit a selective insulin-resistant state; and (iii) metformin can exert a post-receptor effect, at the level of the liver plasma membrane, which restores the ability of insulin to inhibit adenylate cyclase.  相似文献   

3.
Exposure of rat pancreatic islet membranes to [alpha-32P]-NAD+ in the presence of Bordetella Pertussis toxin (islet-activating protein) reveals the ADP-ribosylation of a peptide with a Mr close to 41 kDa, which corresponds to the alpha-subunit of the guanine nucleotide regulatory protein Ni. Islets removed from rats pretreated with the Bordetella Pertussis toxin display a specific increase in adenylate cyclase responsiveness to GTP and are characterized by a resistance to the inhibitory action of alpha2-adrenergic agonists upon either adenylate cyclase activity or glucose-induced insulin release.  相似文献   

4.
Adipocytes from spontaneously hypertensive rats (SHR) are not as responsive to isoproterenol or dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) stimulation compared with Sprague-Dawley or Wistar-Kyoto rats. Lipolytic activity in adipocytes from trained normotensive rats was enhanced in response to 1 microM isoproterenol and 0.5 mM dibutyryl cAMP but not in adipocytes from trained SHR. Decreases in isoproterenol-stimulated (1 microM) cAMP accumulation were evident in adipocytes from trained normotensive rats but not in adipocytes from trained SHR. Basal and agonist-induced lipolysis in fat cells isolated from both normotensive rats and SHR immediately following a 60-min run was increased in both sedentary and trained rats. Adenylate cyclase activity in fat cell membranes was blunted in sedentary and trained SHR both in the absence and presence of 100 microM 5'-guanylyl imidophosphate. No apparent differences existed in antagonist affinity of binding sites for the antagonist dihydroalprenolol in normal rats or SHR. Evidence for a change in affinity of agonist isoproterenol might be indicated based on the enhanced potency of isoproterenol to stimulate lipolysis in trained normal rats. beta-Adrenergic receptor density and antagonist affinity were not different in normotensive rats and SHR in response to training. However, displacement of [3H]dihydroalprenolol in adipocytes from SHR required greater concentrations of isoproterenol compared with adipocytes from normotensive rats, further suggestive of increased agonist affinity of binding sites in normal rats. These data suggest a postreceptor lesion of the lipolytic pathway in adipocytes from spontaneously hypertensive rats, possibly at the guanine nucleotide regulatory protein level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This study investigated alterations in glucagon receptor-mediated signal transduction in rat livers from 7- to 25-mo-old animals and examined the effects of exercise training on ameliorating these changes. Sixty-six young (4 mo), middle-aged (12 mo), and old (22 mo) male Fischer 344 rats were divided into sedentary and trained (treadmill running) groups. Isolated hepatic membranes were combined with [(125)I-Tyr(10)]monoiodoglucagon and nine concentrations of glucagon to determine maximal binding capacity (B(max)) and dissociation constant (K(d)). No alterations were found in B(max) among groups; however, middle-aged trained animals had significantly higher glucagon affinity (lower K(d); 21.1 +/- 1.8 nM) than did their untrained counterparts (50.2 +/- 7.1 nM). Second messenger studies were performed by measuring adenylyl cyclase (AC) specific activity under basal conditions and with four pharmacological stimulations to assess changes in receptor-dependent, G protein-dependent, and AC catalyst-dependent cAMP production. Age-related declines were observed in the old animals under all five conditions. Training resulted in increased cAMP production in the old animals when AC was directly stimulated by forskolin. Stimulatory G protein (G(s)) content was reduced with age in the sedentary group; however, training offset this decline. We conclude that age-related declines in glucagon signaling capacity and responsiveness may be attributed, in part, to declines in intrinsic AC activity and changes in G protein [inhibitory G protein (G(i))/G(s)] ratios. These age-related changes occur in the absence of alterations in glucagon receptor content and appear to involve both G protein- and AC-related changes. Endurance training was able to significantly offset these declines through restoration of the G(i)/G(s) ratio and AC activity.  相似文献   

6.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

7.
We have previously shown the incorporation of dietary omega-3 and omega-6 fatty acids from menhaden oil and corn oil, respectively, into membrane phospholipids of submandibular salivary gland (SMSG) of rat [Alam S. Q. and Alam B. S. (1988) Arch. Oral Biol. 33, 295-299]. We now demonstrate the influence of such incorporation on the regulation of G proteins and adenylate cyclase activity. Cholera toxin ribosylated three protein peptides (Mr 42,000, 44,000 and 46,000) to different extents in the two groups. We found 4.9- and 2.6-fold higher and 0.4-fold lower ribosylation of Mr 42,000, 44,000 and 46,000 peptides, respectively, in SMSG membranes of rats fed a diet containing 10% menhaden oil (group II) compared to those fed 10% corn oil (group I). Functional distinctions between different forms of these peptides are not known. Cholera toxin also exhibited radiolabelling of three peptides in the SMSG membranes from normal or fasting rats. In these membranes inhibitory G proteins were not detected by pertussis toxin dependent ADP ribosylation or by a low concentration of guanylyl 5-imidodiphosphate (10(-8) M), which selectively activates inhibitory G proteins which inhibit forskolin stimulated activity of adenylate cyclase. In group II membranes both basal and fluoride stimulated activities of adenylate cyclase were found to be significantly higher than the corresponding values in group I (P less than 0.02). In cholera toxin dependent ribosylated membranes of group I, basal and fluoride stimulated activities of adenylate cyclase were significantly higher than those obtained in the absence of cholera toxin (P less than 0.02). Surprisingly, corresponding values were found to be lower in ribosylated membranes of group II. This could be due either to conformational changes in heavily ribosylated G proteins, which alters coupling with the catalytic subunit of adenylate cyclase, or due to dissociation of excessive inhibitory beta gamma complex from alpha beta gamma complex upon the activation of G proteins.  相似文献   

8.
Adenosine, acting via A1 adenosine receptors, can inhibit adenylate cyclase activity in adipocytes. To assess the effects of chronic adenosine agonist exposure on the A1 adenosine receptor system of adipocytes, rats were infused with (-)-phenylisopropyladenosine or vehicle for 6 days and membranes were prepared. Basal as well as isoproterenol-, sodium fluoride-, and forskolin-stimulated adenylate cyclase activities were significantly increased (approximately 2-fold) in membranes from treated animals. (-)-Phenylisopropyladenosine-mediated inhibition of forskolin-stimulated adenylate cyclase activity was significantly (p = 0.0001) attenuated in membranes from treated rats (20.1 +/- 2.1% inhibition) versus controls (31.6 +/- 2.3% inhibition). Prostaglandin E1-induced inhibition of forskolin-stimulated adenylate cyclase activity was also attenuated: 11.7 +/- 3.6 versus 23.2 +/- 4.6% (p = 0.001). Using the A1 adenosine receptor agonist radioligand (-)-N6-(3-[125I]iodo-4-hydroxyphenylisopropyl)adenosine, 32% fewer high affinity binding sites were detected in membranes from treated animals (p less than 0.04). Photoaffinity labeling with N6-2-(3-[125I]iodo-4-azidophenyl)ethyladenosine revealed no gross difference in receptor structure. The number of beta-adrenergic receptors as well as the percentage of receptors in the high affinity state as assessed by (-)-3-[125I]iodocyanopindolol binding were the same in both groups. In membranes from treated rats, the amount of [alpha-32P]NAD incorporated by pertussis toxin into the alpha subunit of the inhibitory guanine nucleotide regulatory protein (Ni) was decreased by 37 +/- 11%. Concurrently, the quantity of label incorporated by cholera toxin into the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Ns) was increased by 44 +/- 14% in treated membranes. Finally, the capacity of Ns solubilized from treated membranes to stimulate adenylate cyclase activity when reconstituted into cyc- S49 lymphoma cell membranes was enhanced by approximately 50% compared to control. Thus, heterologous desensitization, manifested by a diminished capacity to inhibit adenylate cyclase and an enhanced responsiveness to stimulatory effectors, can be induced in the A1 adenosine receptor-adenylate cyclase system of adipocytes. A decrease in Ni alpha subunit concomitant with an increase in Ns alpha subunit quantity and activity may represent the biochemical mechanism of desensitization in this system.  相似文献   

9.
Cholera toxin (CT) and islet-activating protein (IAP, a Bordetella pertussis toxin) were employed to test the hypothesis that GTP-binding regulatory proteins are released from plasma membranes to a greater extent when ‘activated’ than when ‘inactivated’. CT, which activates Ns (the stimulatory GTP-binding regulatory protein of the adenylate cyclase system), catalyzed the incorporation of radioactivity from [32P]NAD into 45 and 47.5 kDa peptides associated with rat liver plasma membranes. Following ADP-ribosylation and centrifugation at 100000 × g for 1 h, approx. 30–35% of these CT-labelled peptides were no longer associated with the plasma membranes, but were recovered from the supernatant fraction. IAP, which inactivates Ni (the inhibitory GTP-binding regulatory protein of the adenylate cyclase system) catalyzed the incorporation of radioactivity from [32P]NAD into a 41 kDa peptide associated with the membranes. However, in contrast to the CT-labelled peptides, typically less than 5% of the lAP-labelled peptide was found in the 100000 × g supernatant fraction, but rather was almost exclusively associated with the membrane pellet. The data indicate that the -subunits of Ns are released from the plasma membrane following activation, and support the hypothesis that the βγ-subunits act to anchor the -subunits to the plasma membrane. Cholera toxin Islet-activating protein GTP-binding protein  相似文献   

10.
Adenylate cyclase activity and levels of guanine nucleotide regulatory proteins (G-proteins) were compared in platelets from normal and non-insulin-dependent diabetic (NIDDM) male subjects. Whilst no differences were noted in basal and NaF-stimulated adenylate cyclase activities the degree of stimulation achieved by both forskolin and prostaglandin, E1 was lower by some 34 and 52% respectively, in platelet membranes from diabetic subjects compared with those from normal control subjects. Altered alpha 1-adrenoceptor-mediated inhibition of prostaglandin E1-stimulated adenylate cyclase activity was evident; it being some 34% lower in platelet membranes from diabetic subjects compared to controls. Analysis of G-protein alpha-subunits, using specific anti-peptide antisera, showed that platelets from all subjects exhibited the Gi-2 and Gi-3, but not the Gi-1 forms of the inhibitory G-protein 'Gi' and all expressed the 42 kDa species of alpha-subunit of the stimulatory G-protein Gs. Whilst platelets of diabetic subjects had levels of Gs which were comparable to those found in control subjects their levels of Gi-2 and Gi-3 were some 49 and 75%, respectively, of those found in platelets from control subjects. It is suggested that changes in adenylate cyclase functioning and G-protein expression may contribute to altered platelet functioning in non-insulin-dependent diabetic subjects.  相似文献   

11.
The influence of islet-activating protein (IAP), a Bordetella pertussis toxin, was studied on adenylate cyclase and GTPase activities in rat adipocyte membranes. Pretreatment of rats or intact rat adipocytes with IAP did not affect adenylate cyclase inhibition by the stable GTP analog, GTP gamma S, whereas inhibition by GTP was abolished. Concomitantly, activation of the adipocyte enzyme by sodium and its inhibition by nicotinic acid were prevented. Furthermore, IAP treatment of adipocyte membranes prevented nicotinic acid-induced stimulation of a high affinity GTPase. The data suggest that a GTP-hydrolyzing system involved in the inhibitory regulation of adenylate cyclase is the target of IAP's action.  相似文献   

12.
Cardiac beta-adrenergic receptor (beta-AR) signaling and left ventricular (LV) responses to beta-AR stimulation are impaired with aging. It is shown that exercise and beta-AR blockade have a favorable effect on cardiac and vascular beta-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on beta-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg.kg(-1).day(-1) for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to beta-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane beta-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac beta-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of beta-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and beta-AR blockade can similarly ameliorate beta-AR signaling in the aged heart, leading to improved beta-AR responsiveness and corresponding LV inotropic reserve.  相似文献   

13.
Neuropeptide Y (NPY) inhibits cardiac adenylate cyclase activity by interacting with specific receptors coupled to a pertussis toxin-sensitive G protein. Structure-activity studies revealed that only C-terminal fragments can exhibit an NPY-like inhibitory effect on 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes. Although NPY(17-36) inhibited 125I-NPY binding with high potency, it produced a biphasic effect on basal (GTP, 10 and 100 microM or guanosine 5'-gamma-O-(thio)triphosphate (GTP gamma S, 10 microM) adenylate cyclase activity. Low concentrations (less than 1 nM) of NPY(17-36) inhibited the adenylate cyclase activity whereas high concentrations (greater than 1 nM) reversed this action. GTP gamma S (100 microM) reversed the biphasic effect of NPY(17-36). NPY(17-36) exhibited only a stimulatory effect in the membranes from pertussis toxin-treated rats and an inhibitory effect with membranes from cholera toxin-treated rats. Low concentrations (less than 1 nM) of NPY(17-36) inhibited isoproterenol-stimulated adenylate cyclase activity whereas high doses (greater than 1 nM) reversed this activity. The cardiac NPY receptor antagonist, NPY(18-36) (1 microM), completely blocked the biphasic effect of NPY(17-36) on isoproterenol-stimulated activity. The inhibitory dose-response curve of NPY on isoproterenol-stimulated adenylate cyclase activity was shifted parallel to the right by NPY(17-36) (1 microM), suggesting that it is an antagonist of NPY at high concentrations. N-alpha-acetylated and C-terminally deamidated analogs of NPY(17-36) had no effect on the adenylate cyclase activity. [im-DNP-His26] NPY exhibited a more pronounced biphasic effect whereas N-alpha-myristoyl-NPY(17-36) elicited only a stimulatory effect. These investigations suggest that: 1) the inhibitory and stimulatory effects of NPY(17-36) are mediated by high affinity NPY receptors coupled to a pertussis toxin-sensitive G protein and a distinct population of low affinity receptors coupled to a cholera toxin-sensitive G protein, respectively; and 2) the stimulatory effect of NPY(17-36) is dissociable.  相似文献   

14.
15.
The beta-adrenergic receptor adenylate cyclase system of ventricular tissue was evaluated in a group of rats submitted to a progressive 10-wk running program on a treadmill and compared with that in a group of rats maintained sedentary during the same period. Adequate training was confirmed by a 46% increase in the gastrocnemius isocitrate dehydrogenase activity in the trained group [1.50 +/- 0.04 vs. 1.03 +/- 0.06 (SE) pmol.g-1.min-1; P less than 0.01). Binding studies with [125I]iodocyanopindolol showed a 13% reduction in the density of beta-adrenergic receptors in trained rats (42.6 +/- 2.1 vs. 49.0 +/- 2.1 fmol/mg; P less than 0.05) without any significant modification in the dissociation constant. The amount of [125I]iodocyanopindolol bound to beta-adrenoceptors in the high-affinity state was reduced by 16.6% in trained rats (12.5 +/- 0.9 vs. 15.0 +/- 0.5 fmol/mg; P less than 0.05) without any significant changes for those in the low-affinity state, indicating a decrease in the coupling between the beta-adrenergic receptors and the guanine stimulatory binding protein. Furthermore, although the basal and sodium fluoride-stimulated adenylate cyclase activities were similar in the two groups of rats, the response of adenylate cyclase maximally stimulated by 10(-5) M isoproterenol was reduced by 16% in trained rats (29.7 +/- 1.4 vs. 35.3 +/- 1.3 pmol.mg-1.min-1; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Bovine liver adenosine kinase is a 43 kDa protein that catalyzes the transfer of phosphate from GTP or ATP to adenosine. Its immunological properties were compared to other GTP-binding proteins of approximately 40 kDa, in particular those involved in signal transduction, such as Gs and Gi, the stimulatory and inhibitory regulatory proteins of adenylyl cyclase, Gt, from the visual excitation system, and Go, a similar protein of unknown function. Antibodies elicited in rabbits against adenosine kinase did not significantly cross-react with other guanyl nucleotide-binding proteins. Antibodies against the other GTP-binding proteins did not react with adenosine kinase. Thus these GTP-binding proteins do not exhibit immunological cross-reactivity.  相似文献   

17.
The effect of pertussis toxin treatment was studied on the inhibitory effect of atrial natriuretic factor (ANF) on adenylate cyclase activity in rat aorta. The incubation of rat aorta washed particles with pertussis toxin and [alpha-32P]NAD resulted in the ADP-ribosylation of a single 40-kDa protein. In addition, pertussis toxin treatment enhanced guanosine 5'-O-(thiotriphosphate) and isoproterenol-stimulated adenylate cyclase activities and attenuated the ANF-mediated inhibition of basal, isoproterenol-, and forskolin-stimulated adenylate cyclase activities. These data suggest that ANF receptors are coupled to adenylate cyclase through inhibitory guanine nucleotide regulatory protein.  相似文献   

18.
When rat adipocyte membranes had been labeled with [3H]GTP in the presence of a beta-adrenergic agonist, the subsequent [3H]GDP release was stimulated by beta-agonists or agonists (e.g. glucagon and secretin) of other "activatory" receptors involved in activation of adenylate cyclase, but was not stimulated by agonists (e.g. prostaglandin E1 and adenosine) of "inhibitory" receptors involved in cyclase inhibition. On the contrary, agonists of inhibitory receptors were effective in stimulating GDP release from hamster adipocyte membranes that had been labeled via inhibitory alpha 2-adrenergic receptors, but an activatory receptor agonist such as isoproterenol was not. Thus, the guanine nucleotide regulatory protein (Ni) involved in adenylate cyclase inhibition is an entity distinct from the regulatory protein (Ns) involved in cyclase activation, and multiple activatory or inhibitory receptors are coupled to a respective common pool of Ns or Ni. Preactivated cholera toxin added together with NAD enhanced GDP release from rat adipocyte membranes prelabeled with isoproterenol but was without effect on the release from hamster adipocyte membranes that had been labeled with an alpha-agonist. In sharp contrast, the active subunit of islet-activating protein, pertussis toxin, failed to alter GDP release from the former membrane but completely abolished inhibitory agonist-induced stimulation of GDP release from the latter membrane preparation in the presence of NAD. Thus, the site of action of cholera toxin is Ns, while that of islet-activating protein is Ni. The function of Ni to communicate between inhibitory receptors and adenylate cyclase was lost when it was ADP-ribosylated by islet-activating protein.  相似文献   

19.
The effect of fiber type and endurance exercise training on skeletal muscle beta-adrenoceptor properties were assessed using a direct radioligand binding technique. Six separate muscles, composed of a variety of different fiber types, were examined in treadmill trained and sedentary rats. In trained animals, sarcolemmal preparations from heart and slow twitch soleus muscle exhibited a significantly greater receptor concentration than membranes from white fast twitch glycolytic fibers of the vastus lateralis. No significant changes were observed between trained and sedentary rat muscle beta-adrenoceptor density (beta max, fmole/mg protein) or affinity (Kd, nM) within each muscle type, despite significantly increased myocardial/body weight ratios and skeletal muscle enzyme adaptations associated with the exercise program. These results suggest that muscle beta-adrenoceptor properties may be influenced in part by the motor nerve innervation to that muscle, and are further discussed with respect to a possible relationship between exercise intensity and receptor regulation.  相似文献   

20.
In isolated pancreatic acinar plasma membranes a 40 kDa protein was labeled with the photoreactive GTP-analogue [alpha 32P] GTP-gamma-azidoanilide. Increased incorporation of the photolabel into the 40 kDa protein was obtained in the presence of increasing concentrations of cholecystokinin-octapeptide (10(-8) - 10(-5) M) but not with carbachol. Adenylyl cyclase activating hormones such as vasoactive intestinal polypeptide and secretin had no effect. Pretreatment of plasma membranes with cholera toxin reduced incorporation of GTP-gamma-azidoanilide into the 40 kDa protein by about 30%. This reduction was reversed if ADP-ribosylation by cholera toxin was performed in the presence of cholecystokinin, whereas carbachol had no effect. The data indicate that a cholera toxin-sensitive 40 kDa GTP-binding protein is involved in functionally coupling cholecystokinin- but not muscarinic acetylcholine-receptors to phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号