首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
A single-gene substitution reassortant 11-1 was generated from two porcine rotaviruses, OSU (serotype 5) and Gottfried (serotype 4). This reassortant derived 10 genes, including gene 4 encoding VP3, from the OSU strain and only gene 9, encoding a major neutralization glycoprotein (VP7), from the Gottfried strain and was thus designated VP3:5; VP7:4. Oral administration of this reassortant to colostrum-deprived gnotobiotic newborn pigs induced a high level of neutralizing antibodies not only to Gottfried VP7 but also to OSU VP3, thus demonstrating that VP3 is as potent an immunogen as VP7 in inducing neutralizing antibodies during experimental oral infection. Gnotobiotic piglets infected previously with the reassortant were completely resistant to oral challenge with the virulent Gottfried strain (VP3:4; VP7:4), as indicated by failure of symptoms to develop and lack of virus shedding. Similarly, prior infection with the reassortant induced almost complete protection against diarrhea and significant restriction of virus replication after oral challenge with the virulent OSU strain (VP3:5; VP7:5). Thus, it appears that (i) the immune system of the piglet responds equally well to two rotavirus outer capsid proteins, VP3 and VP7, during primary enteric rotavirus infection; (ii) antibody to VP3 and antibody to VP7 are each associated with resistance to diarrhea; and (iii) infection with a reassortant rotavirus bearing VP3 and VP7 neutralization antigens derived from two viruses of different serotype induces immunity to both parental viruses. The relevance of these findings to the development of effective reassortant rotavirus vaccines is discussed.  相似文献   

3.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

4.
The rotavirus capsid is composed of three concentric protein layers. Proteins VP4 and VP7 comprise the outer layer. VP4 forms spikes, is the viral attachment protein, and is cleaved by trypsin into VP8* and VP5*. VP7 is a glycoprotein and the major constituent of the outer protein layer. Both VP4 and VP7 induce neutralizing and protective antibodies. To gain insight into the virus neutralization mechanisms, the effects of neutralizing monoclonal antibodies (MAbs) directed against VP8*, VP5*, and VP7 on the decapsidation process of purified OSU and RRV virions were studied. Changes in virion size were followed in real time by 90 degrees light scattering. The transition from triple-layered particles to double-layered particles induced by controlled low calcium concentrations was completely inhibited by anti-VP7 MAbs but not by anti-VP8* or anti-VP5* MAbs. The inhibitory effect of the MAb directed against VP7 was concentration dependent and was abolished by papain digestion of virus-bound antibody under conditions that generated Fab fragments but not under conditions that generated F(ab')(2) fragments. Electron microscopy showed that RRV virions reacted with an anti-VP7 MAb stayed as triple-layered particles in the presence of excess EDTA. Furthermore, the infectivity of rotavirus neutralized via VP8*, but not that of rotavirus neutralized via VP7, could be recovered by lipofection of neutralized particles into MA-104 cells. These data are consistent with the notion that antibodies directed at VP8* neutralize by inhibiting binding of virus to the cell. They also indicate that antibodies directed at VP7 neutralize by inhibiting virus decapsidation, in a manner that is dependent on the bivalent binding of the antibody.  相似文献   

5.
Rhesus rotavirus (RRV) gene 4 was cloned into lambda bacteriophage, inserted into a polyhedrin promoter shuttle plasmid, and expressed in Sf9 cells by a recombinant baculovirus. The baculovirus-expressed VP4 protein made up approximately 5% of the Spodoptera frugiperda-infected cell protein. Monoclonal antibodies that neutralize the virus bound to the expressed VP4 polypeptide, indicating that the expressed VP4 protein was antigenically indistinguishable from viral VP4. In addition, we have determined that the baculovirus-expressed VP4 protein bound to erythrocytes and functions as the RRV hemagglutinin. The endogenous hemagglutinating activity of the VP4 protein, like the virus, was inhibited by guinea pig antirotavirus hyperimmune serum and by VP4-specific neutralizing monoclonal antibodies. The human erythrocyte protein, glycophorin, also inhibited hemagglutination by RRV or the expressed VP4 protein and appears to be the rotavirus erythrocyte receptor. The baculovirus-expressed VP4 protein was conserved functionally and antigenically in the absence of other outer or inner capsid rotavirus components and represents a logical candidate for future immunological studies.  相似文献   

6.
目的:应用非复制腺病毒表达系统构建表达人轮状病毒非结构蛋白4(NSP4)的重组腺病毒,初步评价其免疫保护效果。方法:构建含野生轮状病毒NSP4基因的穿梭质粒pshuttle-NSP4,与腺病毒骨架质粒pAdeasy经同源重组后在Ad-293细胞中包装获得pAd-NSP4重组腺病毒颗粒。电镜、RT-PCR、免疫荧光等方法鉴定病毒特征及在体外细胞中的表达。肌肉注射及滴鼻方式免疫小鼠,检测小鼠血清抗体效价及其中和保护效果。结果:获得了滴度为108.25CCID50/ml的重组腺病毒pAd-NSP4,免疫荧光检测到特异性目的蛋白的表达。二次免疫后肌肉注射和滴鼻小鼠的ELISA血清平均效价分别为1:320 和1:1436.8;中和抗体效价1:45.3和1:71.8。结论:表达轮状病毒NSP4蛋白的非复制型重组腺病毒颗粒具有良好的免疫原性。滴鼻途径比肌肉注射可更加有效地诱导小鼠的免疫应答。  相似文献   

7.
为探索利用重组腺病毒表达轮状病毒的结构抗原以制备轮状病毒基因工程疫苗的可行性,构建了一株可表达A组轮状病毒主要中和抗原VP7的重组腺病毒AdEasyCVP7.AdEasyCVP7感染293细胞后,RT-PCR证明VP7基因有转,Western blotting试验可检测到VP7的表达。随后,用AdEasyCVP7通过灌胃和滴鼻两种不同途径免疫小鼠,并对免疫后小鼠的血清抗体和粘膜抗体进行了比较。初次免疫后,两组小鼠均有应答,但血清抗体滴度及阳转率不同。再次免疫后,滴鼻组小鼠显示出明显的加强效果。对肺灌洗液中的sIgA及肺、肠粘膜组织匀浆中的IgA进行检测发现滴鼻组的免疫学效果明显优于灌胃组。对血清中和抗体的检测表明,初次和再次免疫后,两组小鼠血清中均有中和抗体产生。该研究为轮状病毒基因工程疫苗的免疫方案、免疫途径及免疫保护作用等的进一步研究奠定了基础。  相似文献   

8.
Group A rotavirus is one of the most common causes of severe diarrhea in human infants and newborn animals. Rotavirus virions are triple-layered particles. The outer capsid proteins VP4 and VP7 are highly variable and represent the major neutralizing antigens. The inner capsid protein VP6 is conserved among group A rotaviruses, is highly immunogenic, and is the target antigen of most immunodiagnosis tests. Llama-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity and can therefore be expected to have properties different from conventional antibodies. In this study a library containing the VHH genes of a llama immunized with recombinant inner capsid protein VP6 was generated. Binders directed to VP6, in its native conformation within the viral particle, were selected and characterized. Four selected VHH directed to conformational epitopes of VP6 recognized all human and animal rotavirus strains tested and could be engineered for their use in immunodiagnostic tests for group A rotavirus detection. Three of the four VHH neutralized rotavirus in vivo independently of the strain serotype. Furthermore, this result was confirmed by in vivo partial protection against rotavirus challenge in a neonatal mouse model. The present study demonstrates for the first time a broad neutralization activity of VP6 specific VHH in vitro and in vivo. Neutralizing VHH directed to VP6 promise to become an essential tool for the prevention and treatment of rotavirus diarrhea.  相似文献   

9.
The outer capsid protein of rotavirus, VP7, is a major neutralization antigen and is considered a necessary component of any subunit vaccine developed against rotavirus infection. For this reason, significant effort has been directed towards producing recombinant VP7 that maintains the antigenic characteristics of the native molecule. Using a relatively new expression system, the simple eukaryote Dictyostelium discoideum, we have cloned the portion of simian rotavirus SA11 genome segment 9, encoding the mature VP7 protein, downstream of a native D. discoideum secretion signal sequence in a high-copy-number extrachromosomal vector. The majority of the recombinant VP7 expressed by transformants was intracellular and was detected by Western immunoblot following gel electrophoresis as two or three bands with an apparent molecular mass of 35.5 to 37.5 kDa. A small amount of VP7 having an apparent molecular mass of 37.5 kDa was secreted. Both the intracellular VP7 and the secreted VP7 were N glycosylated and sensitive to endoglycosidase H digestion. Under nonreducing electrophoresis conditions, over half the intracellular VP7 migrated as a monomer while the remainder migrated with an apparent molecular mass approximately twice that of the monomeric form. In an enzyme-linked immunosorbent assay, intracellular VP7 reacted with both nonneutralizing and neutralizing antibodies. The monoclonal antibody recognition pattern paralleled that found with VP7 expressed in either vaccinia virus or herpes simplex virus type 1 and confirms that D. discoideum-expressed VP7 is able to form the major neutralization domains present on viral VP7. Because D. discoideum cells are easy and cheap to grow, this expression system provides a valuable alternative for the large-scale production of recombinant VP7 protein.  相似文献   

10.
A baculovirus-expressed VP4 protein derived from the simian rhesus rotavirus (RRV) was used to parenterally immunize murine dams. VP4-immunized dams developed high levels of neutralizing antibodies against RRV and low levels of cross-reactive neutralizing antibodies against human strains Wa, ST3, and S2 and animal strains SA-11, NCDV, and Eb. Newborn mice suckled on VP4-immunized dams were protected against a virulent challenge dose of the simian strain RRV and against murine rotavirus Eb. The cross-reactive nature of the serum-neutralizing response generated by VP4 immunization and the protective efficacy of the immunization suggest that recombinant-expressed VP4 proteins should be considered as viable vaccine candidates.  相似文献   

11.
Rotavirus capsid protein VP5* permeabilizes membranes   总被引:2,自引:0,他引:2       下载免费PDF全文
Proteolytic cleavage of the VP4 outer capsid spike protein into VP8* and VP5* proteins is required for rotavirus infectivity and for rotavirus-induced membrane permeability. In this study we addressed the function of the VP5* cleavage fragment in permeabilizing membranes. Expressed VP5* and truncated VP5* proteins were purified by nickel affinity chromatography and assayed for their ability to permeabilize large unilamellar vesicles (LUVs) preloaded with carboxyfluorescein (CF). VP5* and VP5* truncations, but not VP4 or VP8*, permeabilized LUVs as measured by fluorescence dequenching of released CF. Similar to virus-induced CF release, VP5*-induced CF release was concentration and temperature dependent, with a pH optimum of 7.35 at 37 degrees C, but independent of the presence of divalent cations or cholesterol. VP5*-induced permeability was completely inhibited by VP5*-specific neutralizing monoclonal antibodies (2G4, M2, or M7) which recognize conformational epitopes on VP5* but was not inhibited by VP8*-specific neutralizing antibodies. In addition, N-terminal and C-terminal VP5* truncations including residues 265 to 474 are capable of permeabilizing LUVs. These findings demonstrate that VP5* permeabilizes membranes in the absence of other rotavirus proteins and that membrane-permeabilizing VP5* truncations contain the putative fusion region within predicted virion surface domains. The ability of recombinant expressed VP5* to permeabilize membranes should permit us to functionally define requirements for VP5*-membrane interactions. These findings indicate that VP5* is a specific membrane-permeabilizing capsid protein which is likely to play a role in the cellular entry of rotaviruses.  相似文献   

12.
This study was to determine whether individual rotavirus capsid proteins could stimulate protection against rotavirus shedding in an adult mouse model. BALB/c mice were intranasally or intramuscularly administered purified Escherichia coli-expressed murine rotavirus strain EDIM VP4, VP6, or truncated VP7 (TrVP7) protein fused to the 42.7-kDa maltose-binding protein (MBP). One month after the last immunization, mice were challenged with EDIM and shedding of rotavirus antigen was measured. When three 9-microg doses of one of the three rotavirus proteins fused to MBP were administered intramuscularly with the saponin adjuvant QS-21, serum rotavirus immunoglobulin G (IgG) was induced by each protein. Following EDIM challenge, shedding was significantly (P = 0.02) reduced (i.e., 38%) in MBP::VP6-immunized mice only. Three 9-micrograms doses of chimeric MBP::VP6 or MBP::TrVP7 administered intranasally with attenuated E. coli heat-labile toxin LT(R192G) also induced serum rotavirus IgG, but MBP::VP4 immunization stimulated no detectable rotavirus antibody. No protection against EDIM shedding was observed in the MBP::TrVP7-immunized mice. However, shedding was reduced 93 to 100% following MBP::VP6 inoculation and 56% following MBP::VP4 immunization relative to that of controls (P = <0.001). Substitution of cholera toxin for LT(R192G) as the adjuvant, reduction of the number of doses to 1, and challenge of the mice 3 months after the last immunization did not reduce the level of protection stimulated by intranasal administration of MBP::VP6. When MBP::VP6 was administered intranasally to B-cell-deficient microMt mice that made no rotavirus antibody, shedding was still reduced to <1% of that of controls. These results show that mice can be protected against rotavirus shedding by intranasal administration of individual rotavirus proteins and that this protection can occur independently of rotavirus antibody.  相似文献   

13.
AIMS: To determine if live recombinant Lactococcus lactis strains expressing rotavirus VP7 antigen are immunogenic in mice. METHODS AND RESULTS: Using the food-grade lactic acid bacterium L. lactis as a carrier, we expressed VP7, the major rotavirus outer shell protein and one of the main components of the infective particle, as a cytoplasmic, secreted or cell wall anchored forms. Our results showed that recombinant L. lactis strains secreting VP7 proved to be more immunogenic than strains containing the antigen in the cytoplasm or anchored to the cell wall. CONCLUSIONS: This is the first demonstration that recombinant L. lactis producing VP7 can induce the production of a neutralizing antibody response against rotavirus by the intragastric route. SIGNIFICANCE AND IMPACT OF THE STUDY: Rotaviruses are the single most important aetiological agents of severe diarrhoea of infants and young children worldwide and have been estimated to be responsible for 650 000-800 000 deaths per year of children younger than 5 years old in development countries. Thus, the development of a safe and effective vaccine has been a global public health goal. Although two of five mice orally inoculated with L. lactis strains secreting VP7 elicited a specific-antibody response, these strains could be very useful to be used as a prototype to develop a new generation of protective rotavirus vaccines.  相似文献   

14.
In 1983, we isolated a porcine rotavirus (strain YM) that was prevalent in several regions of Mexico, as judged by the frequency of its characteristic electropherotype. By a focus reduction neutralization test, rotavirus YM was clearly distinguished from prototype rotavirus strains belonging to serotypes 1 (Wa), 2 (S2), 3 (SA11), 4 (ST3), 5 (OSU), and 6 (NCDV). Minor, one-way cross-neutralization (1 to 5%) was observed when antisera to the various rotavirus strains were incubated with rotavirus YM. In addition, the YM virus was not neutralized by neutralizing monoclonal antibodies with specificity to serotypes 1, 2, 3, and 5. The subgroup of the virus was determined to be I by enzyme-linked immunosorbent assay. To characterize the serotype-specific glycoprotein of the virus at the molecular level, we cloned and sequenced the gene coding for VP7. Comparison of the deduced amino acid sequence with reported homologous sequences from human and animal rotavirus strains belonging to six different serotypes further supported the distinct immunological identity of the YM VP7 protein.  相似文献   

15.
为探索以非复制型腺病毒为表达载体的多价轮状病毒(Rotavirus,RV)基因工程疫苗的可行性,在前期工作的基础上,对表达我国G2和G3型RV流行毒株vp7基因的重组腺病毒的免疫效果进行了研究。分别用表达G2和G3型vp7基因的重组腺病毒rvAdG2VP7、rvAdG3VP7经滴鼻和灌胃两种途径免疫Balb/c小鼠,对免疫后小鼠的血清抗体、黏膜抗体和相关的细胞因子水平进行了检测和比较。结果表明,用表达G2和G3型vp7基因的重组腺病毒经滴鼻和灌胃两种途径免疫小鼠后,均可诱导机体产生较强的RV特异性免疫反应,包括体液免疫、细胞免疫和黏膜免疫,并能产生中和抗体。但免疫反应以Th2类为主,Th1类反应也占有相当的比例。本研究为新型RV基因工程疫苗的深入研究奠定了基础。  相似文献   

16.
Isolation of human monoclonal antibodies that neutralize human rotavirus   总被引:8,自引:0,他引:8  
A human antibody library constructed by utilizing a phage display system was used for the isolation of human antibodies with neutralizing activity specific for human rotavirus. In the library, the Fab form of an antibody fused to truncated cp3 is expressed on the phage surface. Purified virions of strain KU (G1 serotype and P[8] genotype) were used as antigen. Twelve different clones were isolated. Based on their amino acid sequences, they were classified into three groups. Three representative clones-1-2H, 2-3E, and 2-11G-were characterized. Enzyme-linked immunosorbent assay with virus-like particles (VLP-VP2/6 and VLP-VP2/6/7) and recombinant VP4 protein produced from baculovirus recombinants indicated that 1-2H and 2-3E bind to VP4 and that 2-11G binds to VP7. The neutralization epitope recognized by each of the three human antibodies might be human specific, since all of the antigenic mutants resistant to mouse monoclonal neutralizing antibodies previously prepared were neutralized by the human antibodies obtained here. After conversion from the Fab form of an antibody into immunoglobulin G1, the neutralizing activities of these three clones toward various human rotavirus strains were examined. The 1-2H antibody exhibited neutralizing activity toward human rotaviruses with either the P[4] or P[8] genotype. Similarly, the 2-3E antibody showed cross-reactivity against HRVs with the P[6], as well as the P[8] genotype. In contrast, the 2-11G antibody neutralized only human rotaviruses with the G1 serotype. The concentration of antibodies required for 50% neutralization ranged from 0.8 to 20 micro g/ml.  相似文献   

17.
A system for the expression and purification of soluble VP8*, part of the human rotavirus (HRV) spike protein, was established by expressing VP8* as a fusion protein with glutathione S-transferase (GST). VP8 cDNA, from the Wa strain of HRV, was prepared by RT-PCR, cloned into a pUC18 plasmid, and inserted into a pGEX-4T-2 GST fusion vector. The GST-VP8* fusion protein was expressed in Escherichia coli, and the VP8* was purified by Glutathione Sepharose 4B affinity chromatography, yielding 1.8 mg VP8*/L culture. The purified VP8* was used to vaccinate chickens, eliciting antibodies which displayed high neutralization activity against the Wa strain of HRV, suggesting its use for the induction of specific neutralizing antibodies for potential immunotherapeutic applications for the prevention of HRV infection.  相似文献   

18.
Two outer capsid rotavirus proteins, VP3 and VP7, have been found to elicit neutralizing-antibody production, but the immunogenicity of these proteins during human rotavirus infection has not been determined. The relative amounts of serum neutralizing antibody against the VP3 and VP7 proteins of the CJN strain of human rotavirus were, therefore, determined in adult subjects before and after infection with this virus. Reassortant strains of rotavirus that contained the CJN gene segment for only one of these two neutralization proteins were isolated and used for this study. The geometric mean titer of serum neutralizing antibody to a reassortant virus (CJN-M) that contained VP7 of CJN and VP3 of another human rotavirus was 12.7 times less than that of antibody to CJN before infection and 20.3 times less after infection. This indicated that most neutralizing antibody was against the VP3 rather than the VP7 protein of CJN. This result was confirmed with other reassortants between CJN and animal rotavirus strains (EDIM and rhesus rotavirus). These findings suggest that VP3 is the primary immunogen that stimulates neutralizing antibody during at least some rotavirus infections of humans.  相似文献   

19.
cDNA clones representing the VP8 and VP5 subunits of VP4 of symptomatic human rotavirus strain KU (VP7 serotype 1 and VP4 serotype 1A) or DS-1 (VP7 serotype 2 and VP4 serotype 1B) or asymptomatic human rotavirus strain 1076 (VP7 serotype 2 and VP4 serotype 2) were constructed and inserted into the pGEMEX-1 plasmid and expressed in Escherichia coli. Immunization of guinea pigs with the VP8 or VP5 protein of each strain induced antibodies that neutralized the rotavirus from which the VP4 subunits were derived. In a previous study (M. Gorziglia, G. Larralde, A.Z. Kapikian, and R. M. Chanock, Proc. Natl. Acad. Sci. USA 87:7155-7159, 1990), three distinct serotypes and one subtype of VP4 outer capsid protein were identified among 17 human rotavirus strains that had previously been assigned to five distinct VP7 serotypes. The results obtained by cross-immunoprecipitation and by neutralization assay with antisera to the VP8- and VP5-expressed proteins suggest that the VP8 subunit of VP4 contains the major antigenic site(s) responsible for serotype-specific neutralization of rotavirus via VP4, whereas the VP5 subunit of VP4 is responsible for much of the cross-reactivity observed among strains that belong to different VP4 serotypes.  相似文献   

20.
We are developing rotavirus vaccines based on the VP6 protein of the human G1P[8] [corrected] [J. Virol. 73 (1999) 7574] CJN strain of rotavirus. One prototype candidate consisting of MBP::VP6::His6, a chimeric protein of maltose-binding protein, VP6 and hexahistidine, was expressed mainly as truncated polypeptides in Escherichia coli BL21(DE3) cells. A possible reason for this extensive truncation is the high frequencies of rare bacterial codons within the rotavirus VP6 gene. Expression of truncated recombinant VP6 was found to be reduced, and expression of complete VP6 protein was simultaneously increased, when the protein was expressed in Rosetta(DE3)pLacI E. coli cells that contain increased amounts of transfer RNAs for a selection of rare codons. The same observation was made when a synthetic codon-optimized CJN-VP6 gene was expressed in E. coli BL21 or Rosetta cells. To increase protein recovery, recombinant E. coli cells were treated with 8M urea. Denatured, full-length MBP::VP6::His6 protein was then purified and used for intranasal vaccination of BALB/c mice (2 doses administered with E. coli heat-labile toxin LT(R192G) as adjuvant). Following oral challenge with the G3P[16] [corrected] [J. Virol. 76 (2002) 560] EDIM strain of murine rotavirus, protection levels against fecal rotavirus shedding were comparable (P>0.05) between groups of mice immunized with denatured codon-optimized or native (not codon-optimized) immunogen with values ranging from 87 to 99%. These protection levels were also comparable to those found after immunization with non-denatured CJN VP6. Thus, expression of complete rotavirus VP6 protein was greatly enhanced by codon optimization, and the protection elicited was not affected by denaturation of recombinant VP6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号