首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An acetyl-histone peptide library was used to determine the thermodynamic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains interact with histones by binding acetylated lysines. The bromodomain used in this study, BrD3, is derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin remodeling complex. Steady-state fluorescence anisotropy was used to examine the variations in specificity and affinity that drive molecular recognition. Temperature and salt concentration dependence studies demonstrate that the hydrophobic effect is the primary driving force, consistent with lysine acetylation being required for binding. An electrostatic effect was observed in only two complexes where the acetyl-lysine was adjacent to an arginine. The large change in heat capacity determined for the specific complex suggests that the dehydrated BrD3-histone interface forms a tightly bound, high-affinity complex with the target site. These explorations into the thermodynamic driving forces that confer acetylation site-dependent BrD3-histone interactions improve our understanding of how individual bromodomains work in isolation. Furthermore, this work will permit the development of hypotheses regarding how the native Pb1, and the broader class of bromodomain proteins, directs multisubunit chromatin remodeling complexes to specific acetyl-nucleosome sites in vivo.  相似文献   

2.
Stopped-flow fluorescence anisotropy was used to determine the kinetic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains are acetyllysine binding motifs found in many chromatin associated proteins. Individual bromodomains were derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin-remodeling complex that has six tandem bromodomains in the amino-terminal region. The average k(on) and k(off) values for the formation of high-affinity complexes are 275 M(-1) s(-1) and 0.41 x 10(-3) s(-1), respectively. The average k(on) and k(off) values for the formation of low-affinity complexes are 119 M(-1) s(-1) and 1.42 x 10(-3) s(-1), respectively. Analysis of the on- and off-rates yields acetylation site-dependent equilibrium dissociation constants averaging 1.4 and 12.9 microM for high- and low-affinity complexes, respectively. This work represents the first examination of kinetic mechanisms of acetylation-dependent bromodomain-histone interactions.  相似文献   

3.
4.
Computational analysis reveals six tandem bromodomains within the amino-terminal region of the human Polybromo-1 protein, a required subunit of the Polybromo, BRG1-associated factors chromatin remodeling complex. Bromodomains are acetyl-lysine binding modules found in many chromatin binding proteins and histone acetyltransferases. Recent in vivo studies suggest that bromodomains can both discriminate the presence of an acetyl group on a lysine side chain and locate the acetyl-lysine within a histone protein. Together, this implies that multiple bromodomains may be able to function cooperatively and recognize a specific acetylation pattern to localize remodeling complexes to specific chromatin sites. Here, the cloning, expression and bioactivity of recombinant bromodomains from the human Polybromo-1 protein is described. Individual bromodomains from Polybromo-1 were cloned from human cDNA into a pET30b expression vector enabling effective one-step purification by affinity chromatography. Due to complications, including the high number of rare codons found in the coding regions and the tendency of individually expressed domains to aggregate and misfold, bacterial expression was only achieved using a cell strain containing rare eukaryotic tRNAs. Fluorescence-based bioactivity assays were performed to determine if native binding features were retained. The present cloning, expression, and purification procedure enabled the preparation of large quantity and high yields of biologically active recombinant bromodomains from human Polybromo-1 for in vitro structure and function studies. This is the first report of recombinant active form of bromodomains obtained from PB1.  相似文献   

5.
6.
Bromodomain: an acetyl-lysine binding domain   总被引:15,自引:0,他引:15  
Zeng L  Zhou MM 《FEBS letters》2002,513(1):124-128
  相似文献   

7.
Lysine acetylation is a posttranslational protein modification mediating protein–protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.  相似文献   

8.
9.
The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were lethal in combination with gcn5Delta, whereas combinations with esa1 grew well. Replacements involving Lys14 of histone H3 (the main target of Gcn5), but not other H3 or H4 lysine residues, also conferred severe growth defects to rsc4 mutant strains. Importantly, wild-type Rsc4 bound an H3 tail peptide acetylated at Lys14, whereas a bromodomain mutant derivative did not. Loss of particular histone deacetylases suppressed rsc4 bromodomain mutations, suggesting that Rsc4 promotes gene activation. Furthermore, rsc4 mutants displayed defects in the activation of genes involved in nicotinic acid biosynthesis, cell wall integrity, and other pathways. Taken together, Rsc4 bears essential tandem bromodomains that rely on H3 Lys14 acetylation to assist RSC complex for gene activation.  相似文献   

10.
11.
12.
13.
14.
15.
Bromodomains (BRDs) recognize acetyl-lysine modified histone tails mediating epigenetic processes. BRD4, a protein containing two bromodomains, has emerged as an attractive therapeutic target for several types of cancer as well as inflammatory diseases. Using a fragment-based in silico screening approach, we identified two small molecules that bind to the first bromodomain of BRD4 with low-micromolar affinity and favorable ligand efficiency (0.37 kcal/mol per non-hydrogen atom), selectively over other families of bromodomains. Notably, the hit rate of the fragment-based in silico approach is about 10% as only 24 putative inhibitors, from an initial library of about 9 million molecules, were tested in vitro.  相似文献   

16.
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.  相似文献   

17.
18.
19.
20.
The abnormal accumulation of Cu2+ is closely correlated with the incidence of different diseases, such as Alzheimer's disease and Wilson disease. To study in vivo functions of Cu2+ will lead to a better understanding of the nature of these diseases. In the present study, effect of Cu2+ on histone acetylation was investigated in human hepatoma cells. Exposure of cells to Cu2+ resulted in a significant decrease of histone acetylation, as indicated by the decrease of the overall histone acetylation and the decrease of histone H3 and H4 acetylation. Since histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlled the state of histone acetylation in vivo, we tested their contribution to the inhibition of Cu2+ on histone acetylation. One hundred nanomolar trichostatin A, the specific inhibitor of HDAC, did not attenuate the inhibitory effect of Cu2+ on histone acetylation. Combined with that Cu2+ showed no effect on the in vitro activity of HDAC, these results led to the conclusion that it is HAT, but not HDAC that is involved in Cu2+ -induced histone hypoacetylation. This conclusion was confirmed by the facts that (1) Cu2+ significantly inhibited the in vitro activity of HAT, (2) Cu2+ -treated cells possessed a lower HAT activity than control cells, and (3) 50 or 100 microM bathocuproine disulfonate, a chelator of Cu2+, significantly attenuated the inhibition of Cu2+ on HAT activity and histone acetylation in the similar pattern. Combined with that Cu2+ showed no or obvious cytotoxicity at 100 or 200 microM in human hepatoma cells, and the previous study that Cu2+ inhibits the histone H4 acetylation of yeast cells at nontoxic or toxic levels, the data presented here suggest that inhibiting histone acetylation is probably one general in vivo function of Cu2+, where HAT is its molecular target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号