首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal ions play essential roles in nucleic acids folding and stability. The interaction between metal ions and nucleic acids can be highly complicated because of the interplay between various effects such as ion correlation, fluctuation, and dehydration. These effects may be particularly important for multivalent ions such as Mg2+ ions. Previous efforts to model ion correlation and fluctuation effects led to the development of the Monte Carlo tightly bound ion model. Here, by incorporating ion hydration/dehydration effects into the Monte Carlo tightly bound ion model, we develop a, to our knowledge, new approach to predict ion binding. The new model enables predictions for not only the number of bound ions but also the three-dimensional spatial distribution of the bound ions. Furthermore, the new model reveals several intriguing features for the bound ions such as the mutual enhancement/inhibition in ion binding between the fully hydrated (diffuse) ions, the outer-shell dehydrated ions, and the inner-shell dehydrated ions and novel features for the monovalent-divalent ion interplay due to the hydration effect.  相似文献   

2.
To investigate actions of water in keratin, the piezoelectric, dielectric, and elastic constants are measured at 10 Hz, at temperatures between -160 and 150 degrees C, and at various hydration levels. From changes in the piezoelectric, dielectric, and dynamic mechanical parameters with moisture content (m.c.), we have identified three regimes (I, II, and III) in the hydration of water for keratin. At high hydration (21% m.c.) around 0 degree C, the piezoelectric constants for keratin steeply decrease with increasing temperature. This may be attributed to interfacial polarization which is strongly related to self-associated water molecules (particularly regime III water) just around crystalline helical regions which can exhibit the stress-induced, i.e., piezoelectric, polarization and may be attributed to electrode polarization induced by the increase of mobile ions in the amorphous matrix region, some of which would be released from their trapped states just around the piezoelectric phase by the regime III water. With increasing hydration, the elastic constants for keratin are found to increase below -70 degrees C and decrease above -70 degrees C. This suggests a viscoelastic transition of the keratin structure due to bound water (regime II water). The piezoelectric, dielectric, and elastic loss peaks are found at around -120 degrees C for hydrated keratin, believed to be due to tightly bound water (regime I water), which acts only to stiffen the keratin structure. The adsorption regions of water in keratin are discussed by a piezoelectric two-phase model, which consists of piezoelectric and nonpiezoelectric phases. It is proposed that water molecule would at least adsorb in the nonpiezoelectric phase.  相似文献   

3.
Structure of DNA hydration shells studied by Raman spectroscopy   总被引:1,自引:0,他引:1  
N J Tao  S M Lindsay  A Rupprecht 《Biopolymers》1989,28(5):1019-1030
We have used Raman scattering to study the water O-H stretching modes at approximately 3450 and approximately 3220 cm-1 in DNA films as a function of relative humidity (r.h.). The intensity of the 3220-cm-1 band vanishes as the r.h. is decreased from 98% to around 80%, which indicates that the hydrogen-bond network of water is disrupted in the primary hydration shell (which therefore cannot have an "ice-like" structure). The number of water molecules in the primary hydration shell was determined from the intensity of the approximately 3200-cm-1 band as about 30 water molecules per nucleotide pair. The approximately 3400-cm-1 O-H stretch band was used for determining the total water content, and this band persists at 0% r.h., implying that 5-6 tightly bound water molecules per nucleotide pair remain. The frequency of the approximately 3400-cm-1 O-H stretch mode is lower by 30 to 45 cm-1 in the primary hydration shell compared to free water. The water content as a function of r.h. obtained from these experiments agrees with gravimetric measurements. The disappearance of the approximately 3200-cm-1 band and the shift of the approximately 3400-cm-1 O-H stretch band provide a reliable way of measuring the hydration number of DNA.  相似文献   

4.
We studied the dynamics of hydrated tRNA using neutron and dielectric spectroscopy techniques. A comparison of our results with earlier data reveals that the dynamics of hydrated tRNA is slower and varies more strongly with temperature than the dynamics of hydrated proteins. At the same time, tRNA appears to have faster dynamics than DNA. We demonstrate that a similar difference appears in the dynamics of hydration water for these biomolecules. The results and analysis contradict the traditional view of slaved dynamics, which assumes that the dynamics of biological macromolecules just follows the dynamics of hydration water. Our results demonstrate that the dynamics of biological macromolecules and their hydration water depends strongly on the chemical and three-dimensional structures of the biomolecules. We conclude that the whole concept of slaving dynamics should be reconsidered, and that the mutual influence of biomolecules and their hydration water must be taken into account.  相似文献   

5.
The notion of diffusible ions is reviewed in the light of recent knowledge on the stage of water in biological matrices. It appears that ion distributions would be little affected as long as water-macromolecular equilibrium is maintained, but they risk to be significantly modified during dehydration, because the transformation of bound water into highly solvating free water can produce ion displacements. In addition, differently hydrated areas may undergo unequal volume variations. The principal modes of preparing material for SIMS (secondary ion mass spectrometry) microscopy are envisaged from this viewpoint.  相似文献   

6.
Three independent dielectric methods for the measurement of water of hydration (bound water) in a biological material are described and discussed comparatively. For well-defined aqueous solutions of biological molecules, hydration can be obtained from direct observations made on the δ dispersion or from measurement of the dielectric values of the β dispersion. For whole tissue, however, neither of these two methods is applicable, and to deduce the hydration, it is necessary to use the third technique in which the volume of the hydrated biological particle is obtained by measuring the effect of it on the known dielectric properties of pure water. The hydration can then be calculated by deducting the volume of the anhydrous particle from the experimentally determined volume of the hydrated particle. Owing to possible systemmatic errors the uncertainty in the absolute hydration value associated with this technique is rather larger than that obtained with the other two dielectric methods. For studying the differences between hydration in similar tissues, however, this objection disappears.  相似文献   

7.
A molecular-dynamics simulation was used to carry out an introductory study of the hydration of a section of a rigid single A- or B-DNA helix with one Na+ counterion per nucleotide. Four Na+ ions and four nucleotides and periodic boundary conditions were used to mimic an infinite helix. The atoms of the helix and the Na+ ions were assumed to be Lennard-Jones spheres that also carried charges. Stillinger four-point charge model water molecules were used. We carried out five calculations, for 26 and 46 water molecules in B-DNA and 20, 32, and 46 in A-DNA fragments. The arrangements of the Na+ ions are found to have some similarities to those obtained by Clementi and Corongiu. In the calculations with 46 water molecules, we found that two Na+ ions can be bridged by about two water molecules and form a hydrated bound pair, which in turn forms a bridge between the guanine N7 and a near phosphate group. These bound pairs may be important in stabilizing the helix structure of DNA molecules.  相似文献   

8.
Water plays an important role in enzyme structure and function in aqueous media. That role becomes even more important when one focuses on enzymes in low water media. Here we present results from molecular dynamics simulations of surfactant-solubilized subtilisin BPN' in three organic solvents (octane, tetrahydrofuran, and acetonitrile) and in pure water. Trajectories from simulations are analyzed with a focus on enzyme structure, flexibility, and the details of enzyme hydration. The overall enzyme and backbone structures, as well as individual residue flexibility, do not show significant differences between water and the three organic solvents over a timescale of several nanoseconds currently accessible to large-scale molecular dynamics simulations. The key factor that distinguishes molecular-level details in different media is the partitioning of hydration water between the enzyme and the bulk solvent. The enzyme surface and the active site region are well hydrated in aqueous medium, whereas with increasing polarity of the organic solvent (octane --> tetrahydrofuran --> acetonitrile) the hydration water is stripped from the enzyme surface. Water stripping is accompanied by the penetration of tetrahydrofuran and acetonitrile molecules into crevices on the enzyme surface and especially into the active site. More polar organic solvents (tetrahydrofuran and acetonitrile) replace mobile and weakly bound water molecules in the active site and leave primarily the tightly bound water in that region. In contrast, the lack of water stripping in octane allows efficient hydration of the active site uniformly by mobile and weakly bound water and some structural water similar to that in aqueous solution. These differences in the active site hydration are consistent with the inverse dependence of enzymatic activity on organic solvent polarity and indicate that the behavior of hydration water on the enzyme surface and in the active site is an important determinant of biological function especially in low water media.  相似文献   

9.
We have studied the block of potassium channels in voltage-clamped squid giant axons by nine organic and alkali cations, in order to learn how the channel selects among entering ions. When added to the internal solution, all of the ions blocked the channels, with inside-positive voltages enhancing the block. Cesium blocked the channels from the outside as well, with inside-negative voltages favoring block. We compared the depths to which different ions entered the channel by estimating the "apparent electrical distance" to the blocking site. Simulations with a three-barrier, double-occupancy model showed that the "apparent electrical distance," expressed as a fraction of the total transmembrane voltage, appears to be less than the actual value if the blocking ion can pass completely through the channel. These calculations strengthen our conclusion that sodium and cesium block at sites further into the channel than those occupied by lithium and the organic blockers. Our results, considered together with earlier work, demonstrate that the depth to which an ion can readily penetrate into the potassium channel depends both on its size and on the specific chemical groups on its molecular surface. The addition of hydroxyl groups to alkyl chains on a quaternary ammonium ion can both decrease the strength of binding and allow deeper penetration into the channel. For alkali cations, the degree of hydration is probably crucial in determining how far an ion penetrates. Lithium, the most strongly hydrated, appeared not to penetrate as far as sodium and cesium. Our data suggest that there are, minimally, four ion binding sites in the permeation pathway of the potassium channel, with simultaneous occupancy of at least two.  相似文献   

10.
Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.  相似文献   

11.
Coordination numbers of alkali metal ions in aqueous solutions   总被引:2,自引:0,他引:2  
  相似文献   

12.
Changes in the intrinsic fluorescence intensity of glutamine synthetase induced by lanthanide(III) ion binding demonstrate the existence of three types of sites for these ions. The sites are populated sequentially during titrations of the enzyme, and the first two have a stoichiometry of 1 per enzyme subunit. The number of water molecules coordinated to Eu(III) bound to the first site was determined by luminescence lifetime techniques to be 4.1 +/- 0.5. The hydration of Gd(III) bound to the same site was studied by magnetic field dependent water proton longitudinal relaxation rate measurements, and by water proton and deuteron relaxation measurements of one sample at single magnetic fields. The magnetic resonance techniques also yield a value of 4 for the hydration number.  相似文献   

13.
Only oppositely charged ions with matching absolute free energies of hydration spontaneously form inner sphere ion pairs in free solution [K.D.Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311.]. We approximate this with a Law of Matching Water Affinities which is used to examine the issues of (1) how ions are selected to be compatible with the high solubility requirements of cytosolic components; (2) how cytosolic components tend to interact weakly, so that association or dissociation can be driven by environmental signals; (3) how polyelectrolytes (nucleic acids) differ from isolated charges (in proteins); (4) how ions, osmolytes and polymers are used to crystallize proteins; and (5) how the "chelate effect" is used by macromolecules to bind ions at specific sites even when there is a mismatch in water affinity between the ion and the macromolecular ligands.  相似文献   

14.
The interaction between metal ions, especially Mg2+ ions, and RNA plays a critical role in RNA folding. Upon binding to RNA, a metal ion that is fully hydrated in bulk solvent can become dehydrated. Here we use molecular dynamics simulation to investigate the dehydration of bound hexahydrated Mg2+ ions. We find that a hydrated Mg2+ ion in the RNA groove region can involve significant dehydration in the outer hydration shell. The first or innermost hydration shell of the Mg2+ ion, however, is retained during the simulation because of the strong ion-water electrostatic attraction. As a result, water-mediated hydrogen bonding remains an important form for Mg2+-RNA interaction. Analysis for ions at different binding sites shows that the most pronounced water deficiency relative to the fully hydrated state occurs at a radial distance of around 11 Å from the center of the ion. Based on the independent 200 ns molecular dynamics simulations for three different RNA structures (Protein Data Bank: 1TRA, 2TPK, and 437D), we find that Mg2+ ions overwhelmingly dominate over monovalent ions such as Na+ and K+ in ion-RNA binding. Furthermore, application of the free energy perturbation method leads to a quantitative relationship between the Mg2+ dehydration free energy and the local structural environment. We find that ΔΔGhyd, the change of the Mg2+ hydration free energy upon binding to RNA, varies linearly with the inverse distance between the Mg2+ ion and the nearby nonbridging oxygen atoms of the phosphate groups, and ΔΔGhyd can reach ?2.0 kcal/mol and ?3.0 kcal/mol for an Mg2+ ion bound to the surface and to the groove interior, respectively. In addition, the computation results in an analytical formula for the hydration ratio as a function of the average inverse Mg2+-O distance. The results here might be useful for further quantitative investigations of ion-RNA interactions in RNA folding.  相似文献   

15.
Summary Ultrastructural details of dry (7% moisture content) and hydratedPyrus communis L. pollen are revealed following freezesubstitution preparation for electron microscopy. Dry pollen is characterized by tightly packed, multilamellate membranous profiles found in association with plasma membrane, vesicles, ER, dictyosomes and some double-membrane bound organelles. Dry pollen also shows unit-membrane bound, densely osmiophilic bodies often with tightly packed multilamellations contained within and, at times, in their bounding membranes. These features are not evident in hydrated pollen. Results suggest that multilamellate membranes form as the plasma membrane, vesicles, ER, and double-membrane bound organelles undergo dehydration, and that upon hydration they rapidly resume normal unilamellate structure.Abbreviations DOB densely osmiophilic body - IMP intramembrane particles - MO multilamellate organelle  相似文献   

16.
《Biophysical journal》2022,121(4):540-551
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.  相似文献   

17.
When introduced into water, some molecules and ions (solutes) enforce the hydrogen-bonded network of neighboring water molecules that are thus restrained from thermal motions and are less mobile than those in the bulk phase (structure-making or positive hydration effect), and other solutes cause the opposite effect (structure-breaking or negative hydration effect). Using a method of microwave dielectric spectroscopy recently developed to measure the rotational mobility (dielectric relaxation frequency) of water hydrating proteins and the volume of hydration shells, the hydration of actin filament (F-actin) has been studied. The results indicate that F-actin exhibits both the structure-making and structure-breaking effects. Thus, apart from the water molecules with lowered rotational mobility that make up a typical hydration shell, there are other water molecules around the F-actin which have a much higher mobility than that of bulk water. No such dual hydration has been observed for myoglobin studied as the representative example of globular proteins which all showed qualitatively similar dielectric spectra. The volume fraction of the mobilized (hyper-mobile) water is roughly equal to that of the restrained water, which is two-thirds of the molecular volume of G-actin in size. The dielectric spectra of aqueous solutions of urea and potassium-halide salts have also been studied. The results suggest that urea and I(-) induce the hyper-mobile states of water, which is consistent with their well-known structure-breaking effect. The molecular surface of actin is rich in negative charges, which along with its filamentous structure provides a structural basis for the induction of a hyper-mobile state of water. A possible implication of the findings of the present study is discussed in relation to the chemomechanical energy transduction through interaction with myosin in the presence of ATP.  相似文献   

18.
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

19.
Hydration and recognition of methylated CpG steps in DNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
C Mayer-Jung  D Moras    Y Timsit 《The EMBO journal》1998,17(9):2709-2718
The analysis of the hydration pattern around methylated CpG steps in three high resolution (1.7, 2.15 and 2.2 A) crystal structures of A-DNA decamers reveals that the methyl groups of cytosine residues are well hydrated. In comparing the native structure with two structurally distinct forms of the decamer d(CCGCCGGCGG) fully methylated at its CpG steps, this study shows also that in certain structural and sequence contexts, the methylated cytosine base can be more hydrated that the unmodified one. These water molecules seem to be stabilized in front of the methyl group through the formation C-H...O interactions. In addition, these structures provide the first observation of magnesium cations bound to the major groove of A-DNA and reveal two distinct modes of metal binding in methylated and native duplexes. These findings suggest that methylated cytosine bases could be recognized by protein or DNA polar residues through their tightly bound water molecules.  相似文献   

20.
钙调蛋白(CaM)是一种多功能调节蛋白,它对靶酶的作用受各种药物拮抗.三氟啦嗪(TFP)是CaM的一种有效拮抗剂.本文利用核磁弛豫法测定与TFP结合前后CaM中金属离子配位水的变化,从而推测CaM与TFP相互作用的方式.结合CD谱的测定结果,可以认为TFP与CaM结合摩尔比不超过2时是特异的强结合,但不影响金属结合部位及主链结构.当比例超过2时,额外的TFP以不同于前的方式结合于CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号