首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early neonatal mortality in England and Wales in the second quarter of 1970 after a major influenza epidemic was slightly but significantly higher than in the corresponding quarter of the previous year. An increase was also noted in the first quarter of 1970. Analysis of infant mortality and an index of influenza prevalence over the past quarter-century indicates that similar increases occurred in relation to four of the other five major influenza epidemics during the period, the exception being the “Asian ''flu” epidemic of the autumn of 1957. It is suggested that the increased mortality in 1970 was the consequence of an increase in the prematurity rate, but we have no evidence to indicate whether the effect is specifically due to the virus or is nonspecific in nature.  相似文献   

2.
Between 1980 and 1985, Czechoslovakia had experienced 4 and the USSR 3 major influenza outbreaks. Of the 3 epidemic outbreaks in the USSR, 2 were associated with influenza B virus (in the 1980/81 and 1983/84 seasons) and 1 with influenza A virus of the H3N2 subtype. In the USSR, influenza A (H1N1) virus never predominated as a cause of epidemic during the 5 years period. In Czechoslovakia, 2 epidemics (in the 1980/81 and 1983/84 seasons) were due to influenza A (H1N1) virus. The epidemic in the 1981/82 season had two waves of unequal heights and a mixed type B and subtype A (H3N2) etiology; a two-wave epidemic associated with isolates of influenza A (H1N1) and influenza B viruses was also recorded in the 1983/84 season. The influenza A (H3N2) epidemic in 1983 was of explosive character. All influenza viruses circulating in the two countries between 1980 and 1985 were of the same antigenic profile, but were isolated from the epidemics that occurred in different influenza seasons. The virological surveillance revealed strains of virus closely related to drift variants detected from outbreaks in 1977-1979 and the new variants A/Chile 1/83, A/Philippines 2/82, A/Caen 1/84 and B/USSR 100/83.  相似文献   

3.
The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May – 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including “stragglers” from the preceding season and “heralds” of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality.  相似文献   

4.
An analysis of morbidity of the population in the course of 3 influenza A/Hong-Kong epidemics showed a pronounced decrease in influenza affection of adult population in the last epidemic in 1971--1972. Comparative studies of the diagnostic value of CFR and HIT demonstrated identical sensitivity of CFR as a method of influenza diagnostics in both the epidemic and interepidemic periods. HIT was suitable for the detection of influenza only in the epidemic period. In the interepidemic period, the percentage of influenza infection diagnosed by means of HIT ammounted to only 23--24 of all serologically confirmed cases of influenza. The highest percentage of virus isolation was observed when material from patients with serologically confirmed influenza was used. All strains of influenza A virus isolated in 1969 and 1970 were similar in their sensitivity to inhibitors of animal sera. During the last influenza epidemic, 2 of the 136 isolated strains were found to be resistant to gamma inhibitors and highly sensitive to the inhibitors showed their close relationship to gamma inhibitors. Antigenic analysis of the influenza A strains isolated during the 3 influenza epidemics revealed changes in the antigenic structure of the agents of the influenza epidemic in Leningrad in comparison with the standard strain A/Hong-Kong/I/68 (H3N2).  相似文献   

5.
This report based on the data available from the Finnish Cancer Registry and from virus isolations gives further support to the association (P=0·04) between maternal influenza of the 1957 “Asian” type and subsequent later leukaemia in the infants. No such association was found from other influenza epidemics.  相似文献   

6.
This study compares the main causes of influenza epidemics reported in Czechoslovakia (CSR) and the German Democratic Republic (GDR) during the 9 seasons between 1980 and 1988. The influenza epidemics due to identical virus types were experienced in the two countries in the 1980, 1984 and 1986 seasons, and of these only the 1984 epidemic associated with A-strain influenza A/Chile/1/83 (H1N1) virus could be demonstrated to spread from the eastern parts of the CSR to the northern areas of the GDR. This implies that influenza epidemics due to identical drift variants spread only exceptionally from one country to the other during the period of observation, in spite of a busy tourist activity across the borderline.  相似文献   

7.
In France, the 2011–2012 influenza epidemic was characterized by the circulation of antigenically drifted influenza A(H3N2) viruses and by an increased disease severity and mortality among the elderly, with respect to the A(H1N1)pdm09 pandemic and post-pandemic outbreaks. Whether the epidemiology of influenza in France differed between the 2011–2012 epidemic and the previous outbreaks is unclear. Here, we analyse the age distribution of influenza like illness (ILI) cases attended in general practice during the 2011–2012 epidemic, and compare it with that of the twelve previous epidemic seasons. Influenza like illness data were obtained through a nationwide surveillance system based on sentinel general practitioners. Vaccine effectiveness was also estimated. The estimated number of ILI cases attended in general practice during the 2011–2012 was lower than that of the past twelve epidemics. The age distribution was characteristic of previous A(H3N2)-dominated outbreaks: school-age children were relatively spared compared to epidemics (co-)dominated by A(H1N1) and/or B viruses (including the 2009 pandemic and post-pandemic outbreaks), while the proportion of adults over 30 year-old was higher. The estimated vaccine effectiveness (54%, 95% CI (48, 60)) was in the lower range for A(H3N2) epidemics. In conclusion, the age distribution of ILI cases attended in general practice seems to be not different between the A(H3N2) pre-pandemic and post-pandemic epidemics. Future researches including a more important number of ILI epidemics and confirmed virological data of influenza and other respiratory pathogens are necessary to confirm these results.  相似文献   

8.
Two influenza epidemics in Britain in 1968-9 and 1969-70, were due to the Hong Kong/68 variant of influenza A2 virus. The first epidemic was prolonged with low morbidity and mortality rates; the second was sharp with high rates. The difference between total morbidity and mortality in the two epidemics, however, was less than it appeared to be—the estimated excess morbidity and mortality due to all causes in 1969-70 was only about 50% greater than in 1968-9.Antibody studies showed that about one-quarter of two groups of adults investigated were infected in the first epidemic and about one-third in the second. After the two epidemics about one-third still had no antibody to the A2/Hong Kong/68 virus.  相似文献   

9.
A study of the effect of measles vaccination on the incidence of the disease in eight separate areas of England and Wales was begun in 1966. It showed an inverse association between the proportion of children vaccinated and the incidence of measles in the area in the following year, but measles epidemics occurred in several of the areas in subsequent years, despite continuing vaccinations.Measles vaccination was introduced on a large scale in Britain in 1968. Analysis of the notification and vaccination statistics shows that the vaccination of about 10% of the child population (under 15 years) in 1968 sufficed to “replace” the measles epidemic which had been expected in the period October 1968 to September 1969 by a low incidence of the disease, typical of that in previous “interepidemic” years. Further, the effect of the vaccinations was to prevent the development of natural measles in susceptible unvaccinated children as well as in the vaccinated subjects. Thus the number of immune subjects in the community was increased by the vaccinations, but as a result there was a reduction in the number of subjects who acquired immunity from natural measles. These opposed results can therefore explain why vaccination may be effective in the community for only a year or two, though vaccination protects the individual for much longer.It is estimated that a continuing vaccination rate of 40 to 50% of the children born each year would be necessary to replace the regular biennial measles epidemics in Britain by a continuous endemic incidence, and might perhaps lead to the disappearance of the disease without a further major epidemic, but that a continuing vaccination rate of 80 to 90% of children born each year would then be necessary to prevent its reintroduction. The long-term control of measles by vaccination will thus probably prove more difficult than for any other infectious disease.  相似文献   

10.
Mixed respiratory viral infections occurring in the course of 8 influenza A epidemics in the Estonian SSR between 1969 and 1978 were investigated. A total of 1638 patients were followed up. The IF method, serological test CFR and HIR and isolation of the virus on tissue cultures and chick embryos were used. Mixed infections were found in 0-77.7% of laboratory-confirmed cases, depending on the epidemic. A combination of influenza A + parainfluenza was observed most frequently during the influenza epidemics in 1971-1977 and a combination of influenza A + influenza B during the 1977-1978 epidemic.  相似文献   

11.
Three epidemics of influenza A (H1N1) occurring in 1977, 1979 and 1981 were studied. These epidemics were found to be gradually dying down, which was manifested by progressively decreasing morbidity rate, the frequency and intensity of seroconversions, as well as by a decrease in the duration of the epidemic period. Changes in the biological properties of influenza A (H1N1) virus were accompanied by changes in its antigenic properties. The drift of neuraminidase in the influenza A (H1N1) virus of 1981 towards increased relationship with neuraminidase in the virus of 1952 was observed, while hemagglutinin in the strains of each of these two groups retained its individual character.  相似文献   

12.
Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates.  相似文献   

13.
Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to that of a variety of simpler baseline predictors.  相似文献   

14.

Background

Many human infectious diseases are caused by pathogens that have multiple strains and show oscillation in infection incidence and alternation of dominant strains which together are referred to as epidemic cycling. Understanding the underlying mechanisms of epidemic cycling is essential for forecasting outbreaks of epidemics and therefore important for public health planning. Current theoretical effort is mainly focused on the factors that are extrinsic to the pathogens themselves (“extrinsic factors”) such as environmental variation and seasonal change in human behaviours and susceptibility. Nevertheless, co-circulation of different strains of a pathogen was usually observed and thus strains interact with one another within concurrent infection and during sequential infection. The existence of these intrinsic factors is common and may be involved in the generation of epidemic cycling of multi-strain pathogens.

Methods and Findings

To explore the mechanisms that are intrinsic to the pathogens themselves (“intrinsic factors”) for epidemic cycling, we consider a multi-strain SIRS model including cross-immunity and infectivity enhancement and use seasonal influenza as an example to parameterize the model. The Kullback-Leibler information distance was calculated to measure the match between the model outputs and the typical features of seasonal flu (an outbreak duration of 11 weeks and an annual attack rate of 15%). Results show that interactions among strains can generate seasonal influenza with these characteristic features, provided that: the infectivity of a single strain within concurrent infection is enhanced 2−7 times that within a single infection; cross-immunity as a result of past infection is 0.5–0.8 and lasts 2–9 years; while other parameters are within their widely accepted ranges (such as a 2–3 day infectious period and the basic reproductive number of 1.8–3.0). Moreover, the observed alternation of the dominant strain among epidemics emerges naturally from the best fit model. Alternative modelling that also includes seasonal forcing in transmissibility shows that both external mechanisms (i.e. seasonal forcing) and the intrinsic mechanisms (i.e., strain interactions) are equally able to generate the observed time-series in seasonal flu.

Conclusions

The intrinsic mechanism of strain interactions alone can generate the observed patterns of seasonal flu epidemics, but according to Kullback-Leibler information distance the importance of extrinsic mechanisms cannot be excluded. The intrinsic mechanism illustrated here to explain seasonal flu may also apply to other infectious diseases caused by polymorphic pathogens.  相似文献   

15.
Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight records, Google Trends, and the World Health Organization''s FluNet data. We estimate that concern over “swine flu,” as measured by Google Trends, accounted for 0.34% of missed flights during the epidemic. The Google Trends data correlates strongly with media attention, but poorly (at times negatively) with reported cases in FluNet. Passengers show no response to reported cases. Passengers skipping their purchased trips forwent at least $50 M in travel related benefits. Responding to actual cases would have cut this estimate in half. Thus, people appear to respond to an epidemic by voluntarily engaging in self-protection behavior, but this behavior may not be responsive to objective measures of risk. Clearer risk communication could substantially reduce epidemic costs. People undertaking costly risk reduction behavior, for example, forgoing nonrefundable flights, suggests they may also make less costly behavior adjustments to avoid infection. Accounting for defensive behaviors may be important for forecasting epidemics, but linking behavior with epidemics likely requires consideration of risk communication.  相似文献   

16.
Li T  Fu C  Di B  Wu J  Yang Z  Wang Y  Li M  Lu J  Chen Y  Lu E  Geng J  Hu W  Dong Z  Li MF  Zheng BJ  Cao KY  Wang M 《PloS one》2011,6(11):e28027
In this two-years surveillance of 2009 pandemic influenza A (H1N1) (pH1N1) in Guangzhou, China, we reported here that the scale and duration of pH1N1 outbreaks, severe disease and fatality rates of pH1N1 patients were significantly lower or shorter in the second epidemic year (May 2010-April 2011) than those in the first epidemic year (May 2009-April 2010) (P<0.05), but similar to those of seasonal influenza (P>0.05). Similar to seasonal influenza, pre-existing chronic pulmonary diseases was a risk factor associated with fatal cases of pH1N1 influenza. Different from seasonal influenza, which occurred in spring/summer seasons annually, pH1N1 influenza mainly occurred in autumn/winter seasons in the first epidemic year, but prolonged to winter/spring season in the second epidemic year. The information suggests a tendency that the epidemics of pH1N1 influenza may probably further shift to spring/summer seasons and become a predominant subtype of seasonal influenza in coming years in Guangzhou, China.  相似文献   

17.

Background

In France, the 2009 A(H1N1) influenza epidemic occurred between September 2009 and January 2010. Sparking widespread controversy, it was intensely reported in the media. Despite therapeutic inefficacy, antibiotic consumption and viral respiratory infections are positively correlated, particularly in France, where antibiotic overconsumption is well-known. We first determined the period when media coverage was high, and then compared, during this period, observed outpatient antibiotic consumption to estimated outpatient antibiotic consumption “without media attention”.

Materials and Methods

To evaluate media coverage, two online databases were consulted: Factiva and Europresse. To quantify outpatient antibiotic consumption, we used data on reimbursements of outpatient systemic antibiotics from the computerized databases of the two main National Health Insurance agencies. Influenza-like syndromes data came from the French GPs Sentinelles Network. Weekly time-series of antibiotic consumption were modeled by autoregressive moving-average models with exogenous inputs and interventions. Analyses were computed for the entire series and by age group (0–5, 6–15, 16–60, and >60 years).

Results

Media coverage was intense between April 2009 and January 2010. No effect on total outpatient antibiotic consumption was observed during the whole mediatic period. However, during the epidemic in France (September 2009-January 2010), we found an antibiotic underconsumption for the entire series, 0–5 and >60 years. Additionally, at the beginning of the pandemic, when cases were still outside France (June 2009-August 2009), we found an antibiotic overconsumption for patients >16 years.

Conclusion

The early period of A(H1N1) virus circulation compared with seasonal influenza or an overdeclaration of ILS cases might explain the antibiotic underconsumption observed during the period of active A(H1N1) virus transmission in France. At the pandemic onset, when uncertainty was high, the overconsumption observed for individuals >16 years might have been caused by alarmist media reporting. Additional analyses are needed to understand the determinants of antibiotic consumption during this period.  相似文献   

18.
Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine.  相似文献   

19.
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09.  相似文献   

20.

Background

Injecting drug use continues to be a primary driver of HIV epidemics in many parts of the world. Many people who inject drugs (PWID) are sexually active, so it is possible that high-seroprevalence HIV epidemics among PWID may initiate self-sustaining heterosexual transmission epidemics.

Methods

Fourteen countries that had experienced high seroprevalence (<20%) HIV epidemics among PWID and had reliable data for injection drug use (IDU) and heterosexual cases of HIV or AIDS were identified. Graphs of newly reported HIV or AIDS cases among PWID and heterosexuals were constructed to identify temporal relationships between the two types of epidemics. The year in which newly reported cases among heterosexuals surpassed newly reported cases among PWID, aspects of the epidemic curves, and epidemic case histories were analyzed to assess whether it was “plausible” or “highly unlikely” that the HIV epidemic among PWID might have initiated the heterosexual epidemic in each country.

Results

Transitions have occurred in 11 of the 14 countries. Two types of temporal relationships between IDU and heterosexual HIV epidemics were identified, rapid high incidence transitions vs. delayed, low incidence transitions. In six countries it appears “plausible” that the IDU epidemic initiated a heterosexual epidemic, and in five countries it appears “highly unlikely” that the IDU epidemic initiated a heterosexual epidemic. A rapid decline in incidence among PWID after the peak year of new cases and national income were the best predictors of the “highly unlikely” initiation of a heterosexual epidemic.

Discussion

Transitions from IDU concentrated epidemics to heterosexual epidemics are common in countries with high seroprevalence among PWID though there are distinct types of transitions. Interventions to immediately reduce HIV incidence among PWID may reduce the likelihood that an IDU epidemic may initiate a heterosexual epidemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号