首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After the administration of the anticancer drug cis-dichlorodiammine platinum II (cisplatin) to male rats, the Pt in the soluble fraction of the kidney is isolated, by gel filtration, in association with a high molecular weight component and a low molecular weight fraction. At 24 h, Pt is also recovered in a metallothionein-like fraction which elutes from Sephadex G-50 with a lower apparent molecular weight than endogenous (Cu, Zn)-thionein or Cd-thionein isolated from the kidneys of Cd2+-treated rats. None of these low molecular weight metal-binding fractions binds to Octyl Sepharose CL-4B. On DE-52 ion exchange chromatography, Cd-thionein is resolved into two isometallothioneins whereas the low molecular weight Pt-binding fraction is only partially purified and contains at least six components which elute at higher gradient concentrations than metallothionein. Pretreatment with Cd2+ which stimulates the synthesis of renal and hepatic metallothionein has no effect on the uptake and subcellular distribution of Pt in the liver and kidneys. Cisplatin treatment reduces the concentration of Cu and Zn in the renal metallothionein and other soluble protein fractions in the kidney. When administered to Cd2+-pretreated rats, cisplatin promotes the loss of Zn from the soluble protein fractions but causes the redistribution of Cd from the metallothionein to the high molecular weight fraction and fails to inhibit the Cd2+-induced accumulation of Cu in the kidneys and the binding of Cu to the soluble protein fractions. It is suggested that metallothionein probably does not have a significant role in the renal metabolism of Pt following the administration of cisplatin to rats.  相似文献   

2.
In order to elucidate the mechanism of the stimulative effect of molybdenum on mercury-mediated renal metallothionein induction, the levels of translatable metallothionein mRNA (MT mRNA) in the kidneys of rats treated with saline or Na2MoO4 or HgCl2 or Na2MoO4 and HgCl2 were measured by translation experiments in cell-free protein synthesizing systems. The time course of accumulation of mercury in renal nuclei of rats given HgCl2 with or without Na2MoO4-pretreatment was also investigated. Molybdenum, itself, did not elevate levels of MT mRNA compared to saline controls at all time points (0, 6 and 14 h after exposure to HgCl2) but rapidly elevated the levels of the mRNA more than Hg-dosed rats when HgCl2 was also administered. On the other hand, the time course study in renal nuclei showed that the mercury content of nuclei was consistently lower in Mo-Hg-dosed rats than in Hg-dosed rats at all time points (4, 8 and 24 h after exposure to HgCl2). These results suggest that the stimulative effect of molybdenum on mercury-mediated metallothionein induction is coupled with an increase of the mRNA coding for the low molecular weight protein and that such an increase in the levels of translatable MT mRNA is not due to the difference in uptake of mercury into renal nuclei.  相似文献   

3.
1. Twenty-four hours after the administration of Cd2+ (11 mumol/kg body weight) to rats, the kidneys were removed and the RNA was extracted from the polysomes and used to prepare poly(A) RNA. 2. The poly(A)+ RNA was translated in rabbit reticulocyte lysates containing different labelled amino acids as precursors and the resultant proteins were separated by polyacrylamide gel electrophoresis. 3. The labelling of the proteins was similar using poly(A)+ RNA obtained from control and Cd2+ treated rats except for two proteins. 4. Regardless of labelled precursor used, proteins of mobility in sodium dodecylsulphate electrophoresis of mol. wt 50,000 contained approx twice as much radioactivity using the RNA from the kidney of treated rats. 5. Using labelled leucine, lysine, and cysteine, but not labelled phenylalanine or histidine, proteins of mobility in sodium dodecylsulphate electrophoresis of mol. wt 10,000 contained approx twice as much radioactivity using the RNA from the kidney of the Cd2+ treated rats. These results and the results following carboxymethylation of the proteins prior to electrophoresis, together with the results from co-electrophoresis of the products [125-I]-labelled liver metallothionein support the view that the poly(A)+ RNA contains kidney mRNA for metallothionein.  相似文献   

4.
Two isoforms of metallothionein (MT) have in general been identified in mammalian cells. We have analyzed Cd2+-induced MTs of primate origin and demonstrated the presence of more than two isoforms. Four low molecular weight Cd2+-binding proteins were separated from Cd2+-exposed HeLa cells by gel filtration and ion-exchange chromatography and identified as MTs by amino acid analysis. These were carboxymethylated and analyzed by electrophoresis under denaturing conditions. Three of these proteins were found to be distinct molecules. We also analyzed hepatic MTs from Cd2+-exposed rhesus monkeys, which have previously been partially separated. In this case, five distinct isomers were detected.  相似文献   

5.
An inducible cadmium-binding protein was isolated from Escherichia coli cells accommodated to 3 X 10(-6) M Cd2+ but not from normal or unaccommodated cells. Sephadex G-100, metal chelate affinity chromatography, and disc gel electrophoresis were used in the purification procedure. The molecular weight of the Cd2+-binding protein was estimated to be about 39,000 by Sephadex G-100 chromatography, making it different from the conventional, much smaller metallothionein.  相似文献   

6.
Following chronic CdCl2 administration to rats, more than 98% of the metal in liver supernatant is bound to the low molecular weight binding protein, metallothionein. Simultaneous administration of high doses of Cd and copper salts result in an increase in toxicity which is accompanied by a failure of Cd sequestration by metallothionein in vivo. This may be due to an aggregation of metallothionein which has been observed in the presence of copper in vitro.  相似文献   

7.
Turnover of metallothioneins in rat liver.   总被引:4,自引:2,他引:2       下载免费PDF全文
Two electrophoretically distinguishable metallothioneins were isolated from the livers of Cd2+-treated rats and had thiol group/metal ratios of 3:1, a total metal content, in each of these proteins, of 3.6 atoms of Cd2+ + 2.4 atoms of Zn2+/molecule and 4.2 atoms of Cd2+ + 2.8 atoms of Zn2+/molecule and respective apoprotein mol.wts. of 5844 and 6251. Studies with 1 h pulse labels of [3H]cysteine, given after a single injection of ZnCl2 or CdCl2, showed that these metals stimulated radioactive isotope incorporation into the metallothioneins over the control value by 10- and 15-fold respectively. This stimulation was maximal at 4 h after a single CdCl2 injection and decreased to control values by 16 h, suggesting that either a translational event is responding to free intracellular Cd2+ or a short-lived mRNA is being produced or stabilized in response to the metal treatment. In rats chronically exposed to CdCl2, the metallothioneins increased to 0.2% of the liver wet weight from a control value of 2--4 mumol/kg of liver, with a maximum rate of accumulation of 2--3 mumol/h per kg of liver. The turnover of these proteins in control animals was 0.3--0.6 mumoles/h per kg of liver, measured by the rate of disappearance of 203Hg2+, which binds irreversibly to the metallothioneins. Pretreatment with CdCl2 completely stopped the rapid 203Hg turnover observed in untreated animals. Unlike CdCl2, treatment with ZnCl2 increased the concentration of metallothioneins to a new steady-state pool, 11 mumole/kg of liver, after 10 h. The increase in the zinc-thionein pool by exposure to ZnCl2 in vivo was determined to be primarily due to a stimulation of metallothionein biosynthesis.  相似文献   

8.
The main binding protein for 109Cd was metallothionein after in vitro incubation of various tissue cytosol preparations obtained from rats supplemented with zinc. The exception was heart cytosol where the label was associated with higher molecular weight proteins. The metallothionein-bound 109Cd was sensitive to trithiomolybdate and moved too higher molecular weight proteins, presumably because of the creation of new stronger ligands by the association of thiomolybdate with these proteins. The 109Cd binding was affected by selenate, selenite, and selenide while molybdate, sulphate, and thiosulphate were ineffective. It is proposed that thiomolybdates should be investigated for use in the therapy of in vivo cadmium toxicity because they can remove the accumulated metal from metallothionein.  相似文献   

9.
Narwhal (Monodon monoceros) liver and kidney cytosol were fractionated by gel chromatography, anion-exchange chromatography and electrophoresis. Cadmium was associated largely with low molecular weight proteins, while mercury was associated also with high molecular weight proteins, but apparently not because of saturation of the metallothionein mechanism. Eight different electrophoretic bands, four of which were metalloproteins, were found under the "metallothionein" peak. Anion-exchange chromatography yielded five metal peaks while further fractionation on G-50 gave two peaks, one containing almost pure metallothionein (Mt-1) and the other a metalloprotein having twice the molecular weight of metallothionein. Mt-2 was observed, at a much lower concentration than Mt-1, in liver but not kidney.  相似文献   

10.
Our early toxicological studies showed that metallothionein (MT) is a protein that carries cadmium (Cd) to the kidney, explaining why Cd exposures during long time periods may give rise to kidney dysfunction. This dysfunction is usually considered to be the critical effect, i.e. the adverse effect that occurs at the lowest exposure level. MT also provides intracellular protection against cadmium toxicity. In studies of population groups in cadmium contaminated areas in China, we investigated factors that affected the relationship between internal dose of Cd, as indicated by blood Cd (BCd) or urinary Cd (UCd), and the prevalence of kidney dysfunction. We found dose-response relationships between UCd and the prevalence of increased levels of biomarkers of renal tubular dysfunction (urinary beta-2-microglobulin, B2M, or N-acetyl-beta-d-glucosaminidase - NAG) or urinary albumin (UAlb), a biomarker of glomerular kidney dysfunction. Two years after Cd intake from contaminated rice was diminished, renal tubular dysfunction appeared unchanged or aggravated among those with higher UCd; Another 8 years later, i.e. 10 years after Cd intake was decreased, the prevalence of renal tubular dysfunction was still increased but UAlb had returned to normal. Factors that influenced the dose-response relationships were: (1) time after maximum exposure. (2) Concomitant exposure to other nephrotoxic agents such as inorganic arsenic. (3) Cd induced metallothionein mRNA levels in peripheral blood lymphocytes, used as a biomarker of the ability of each person, to synthesize MT. (4) The occurrence of increased levels in blood plasma of autoantibodies against MT. The two last points further support a role in humans of MT as a protective protein against tissue damage from cadmium and gives support to previous ideas developed partly in experimental systems.  相似文献   

11.
Heavy metal poisoning: the effects of cadmium on the kidney   总被引:1,自引:0,他引:1  
The heavy metal cadmium (Cd) is known to be a widespread environmental contaminant and a potential toxin that may adversely affect human health. Exposure is largely via the respiratory or gastrointestinal tracts; important non-industrial sources of exposure are cigarette smoke and food (from contaminated soil and water). The kidney is the main organ affected by chronic Cd exposure and toxicity. Cd accumulates in the kidney as a result of its preferential uptake by receptor-mediated endocytosis of freely filtered and metallothionein bound Cd (Cd-MT) in the renal proximal tubule. Internalised Cd-MT is degraded in endosomes and lysosomes, releasing free Cd2+ into the cytosol, where it can generate reactive oxygen species (ROS) and activate cell death pathways. An early and sensitive manifestation of chronic Cd renal toxicity, which can be useful in individual and population screening, is impaired reabsorption of low molecular weight proteins (LMWP) (also a receptor-mediated process in the proximal tubule) such as retinol binding protein (RBP). This so-called ‘tubular proteinuria’ is a good index of proximal tubular damage, but it is not usually detected by routine clinical dipstick testing for proteinuria. Continued and heavy Cd exposure can progress to the clinical renal Fanconi syndrome, and ultimately to renal failure. Environmental Cd exposure may be a significant contributory factor to the development of chronic kidney disease, especially in the presence of other co-morbidities such as diabetes or hypertension; therefore, the sources and environmental impact of Cd, and efforts to limit Cd exposure, justify more attention.  相似文献   

12.
Cd accumulation in the hepatopancreas and gills of the scallop resulted in an increase of metal concentration in the cytoplasm, while in control animals the general amount of Cd in the hepatopancreas was concentrated in the microsomes and cytoplasm. Cd appears to be equally distributed among high molecular weight proteins and metallothioneins in control animals. It was shown that during the experiment the metal was bound mainly to high molecular weight proteins. After 30 days of exposure of scallops to flowing water Cd was redistributed to metallothionein (MT)-like proteins. Cd concentration in the lipids of the hepatopancreas of control and experimental scallops was equal.  相似文献   

13.
We previously showed that Cd2+ is able to induce hepatic and renal ornithine decarboxylase (ODC). In addition to Cd2+, the administration of Co2+ and other metal ions such as Se2+, Zn2+ and Cr2+ produced a significant increase of hepatic and/or renal ODC activity. Of the metal ions used in this study, Co2+ produced the greatest increase of ODC activity. The maximum increases in hepatic and renal ODC activity, to respectively 70 and 14 times the control values in male rats, were observed 6 h after the administration of Co2+. A similar response was seen in the liver, but not in the kidney, of female rats. Thereafter, ODC activity gradually returned to control values in the liver, but it was profoundly decreased to 7% of the control value at 24 h in the kidney. The pretreatment of animals with either actinomycin D or cycloheximide almost completely blocked the Co2+-mediated increase of ODC activity. Co2+ complexed with either cysteine or glutathione (GSH) failed to induce ODC. Depletion of hepatic GSH content by treatment of rats with diethyl maleate greatly enhanced the inducing effect of Co2+ on ODC. The inhibitors of ODC, 1,3-diaminopropane and alpha-difluoromethylornithine, were able to inhibit the induction of the enzyme, without affecting the induction of haem oxygenase by Co2+. Methylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, significantly inhibited the Co2+-mediated induction of both ODC and haem oxygenase. It is suggested that the inducing effects of Co2+ on ODC and haem oxygenase are brought about in a similar manner.  相似文献   

14.
In vivo as well as in vitro protein-metal interaction was studied in cytosolic fractions from intestinal mucosal cells. Female Swiss-Webster mice wre pretreated with cadmium (25 ppm) or copper (100 ppm) in drinking water for 3 weeks. Treatment groups were divided into subgroups receiving Cd or Cd+Cu for an additional 6 weeks. In the in vitro study, mucosal cytosol obtained from pretreated animals was incubated with Cd-109 or Cd-109+Cu. Proteins were separated by gel filtration chromatography and metals determined by furnace AAS or gamma-spectrometry. Cadmium-induced synthesis of metallothionein-like proteins (MTP) in cytosol was indicated by increased Cd in those eluted fractions corresponding to the molecular weight of purified equine renal metallothionein. This cadmium level reached a plateau after 3 weeks of cadmium treatment. In addition, an increased amount of cadmium bound to MTP was noted when copper was added to cadmium in drinking water of mice pretreated with copper. This was not the case for Cd-pretreated animals. The in vitro experiments produced similar results, in that MTP fractions retained a greater percentage of Cd when animals were pretreated with copper compared to controls. Cadmium pretreatment resulted in even higher amounts of cadmium bound to MTP. The existence of a Cd as well as a separate Cu MTP, each with specific metal-binding properties, is suggested.  相似文献   

15.
Cadmium (Cd) is a nephrotoxic environmental pollutant that causes insidious injury to the proximal tubule that results in severe polyuria and proteinuria. Cystatin C is a low molecular weight protein that is being evaluated as a serum and urinary biomarker for various types of ischemic and nephrotoxic renal injury. The objective of the present study was to determine if cystatin C might be a useful early biomarker of Cd nephrotoxicity. Male Sprague–Dawley rats were given daily injections of Cd for up to 12 weeks. At 3, 6, 9 and 12 weeks, urine samples were analyzed for cystatin C, protein, creatinine, β2 microglobulin and kidney injury molecule-1. The results showed that Cd caused a significant increase in the urinary excretion of cystatin C that occurred 3–4 weeks before the onset of polyuria and proteinuria. Serum levels of cystatin C were not altered by Cd. Immunolabeling studies showed that Cd caused the relocalization of cystatin C from the cytoplasm to the apical surface of the epithelial cells of the proximal tubule. The Cd-induced changes in cystatin C labelling paralleled those of the brush border transport protein, megalin, which has been implicated as a mediator of cystatin C uptake in the proximal tubule. These results indicate that Cd increases the urinary excretion of cystatin C, and they suggest that this effect may involve disruption of megalin-mediated uptake of cystatin C by epithelial cells of the proximal tubule.  相似文献   

16.
17.
The administration of inorganic Cd and Hg in vivo has been shown to result in markedly different metal concentrations in rat liver. Primary cultures of rat hepatocytes were utilized to gain insight into the dispositional differences between these chemically similar metals. Hepatocyte monolayer cultures were exposed to several concentrations of Cd or Hg (3, 10 and 30μm) in serum-containing medium for 30min. The cells were then washed and incubated in fresh medium for the remainder of the experiment. Hepatocytes exposed to Cd accumulated significantly more metal than hepatocytes exposed to equimolar concentrations of Hg. In cells exposed to 3μm-Cd there was an initial loss of Cd from the hepatocytes when placed in fresh medium, followed by a gradual re-uptake of metal, concomitant with increased binding to metallothionein. In hepatocytes exposed to 3 and 10μm-Cd, 87 and 77% of the intracellular Cd was bound to metallothionein within 24h. Loss of Hg from hepatocytes pulsed with 30μm-Hg was also observed upon the addition of fresh medium and continued for the duration of the experiment. No time-dependent increase in Hg binding to metallothionein was observed. A maximum of about 10% of the intracellular Hg was found associated with metallothionein in hepatocytes exposed to 30μm-Hg. Studies utilizing [35S]cysteine incorporation indicated significant increases in the amount of metallothionein synthesized in hepatocytes exposed to 3 and 10μm-Cd (300% of control value) and 30μm-Hg (150% of control value) 24h after metal pulsing. Time-course studies revealed a 6–12h lag in metallothionein synthesis, followed by a significant elevation in [35S]cysteine incorporation into metallothionein between 12 and 24h. These studies suggest that (a) isolated hepatocytes differentiate between Cd and Hg and preferentially accumulate the former, and (b) Cd strongly stimulates the induction of, and preferentially binds to, metallothionein, whereas Hg induces weakly, and does not preferentially bind to, metallothionein.  相似文献   

18.
In mussels (Mytilus edulis) chronically exposed to cadmium, 85% of the Cd2+ was found to be associated with membrane-limited granular structures when elemental analyses were carried out on cryo-sectioned tissue by electron probe X-ray microanalysis. These granules also contained high concentrations of sulphur and phosphorus as well as other metalions, including Ca2+, iron and Zn2+. In contrast, after homogenisation and fractionation by differential centrifugation, the major proportion of the Cd2+ was found in the cytoplasmic fraction. However, many lysosomes were also ruptured by this treatment. Gel filtration chromatography of this fraction indicated the presence of a Cd2+-binding component of similar molecular weight to the metallothionein purified from the digestive gland of the same animals. It is therefore proposed that metallothionein may be associated with particulate structures which would thus reduce its cellular toxicity.  相似文献   

19.
Two gold compounds, gold sodium thiomalate (AuTM) and auranofin, are presently in clinical use in therapy of rheumatoid arthritis. In these studies, AuTM administered to Sprague-Dawley rats and three strains of mice, Swiss-Webster, C3H/HeJ, and DBA/2J, were studied with regard to its effect on liver and renal monooxygenases, metallothionein contents, and serum levels of alanine aminotransferase and urea nitrogen. These effects of AuTM were compared to those of cadmium, since the latter metal has exhibited tissue and species differences in the induction of metallothionein. Benzo(a)pyrene hydroxylase and benzphetamine N-demethylase activities were not altered by AuTM in livers of rats and the three strains of mice. Benzo(a)pyrene hydroxylase activity was significantly decreased in rat kidney, whereas this enzyme activity was not affected in the kidneys of mice. In rats, AuTM caused a sevenfold induction in liver metallothionein, while in mice, liver metallothionein was induced twofold in Swiss-Webster mice and about fivefold in the inbred strains. AuTM caused minimal changes in renal metallothionein contents in the three strains of mice studied. Serum alanine amino-transferase, an indicator of hepatotoxicity, was not altered by AuTM in rats and mice studied. Blood urea nitrogen, an indicator of kidney dysfunction, was increased threefold in rats, but not in AuTM-treated mice. These data demonstrate that AuTM, a nephrotoxic agent in rats and humans, showed no nephrotoxic effects in the mouse strains studied here. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
This study was undertaken to evaluate the effect of Zn and Cd pretreatment on the inhibition of delta-aminolaevulinic acid dehydratase (ALAD; porphobilinogen synthase, EC 4.2.1.24) by Pb. Male CD rats were pretreated with 200 mumol of Zn/kg s.c. (subcutaneously) or 18 mumol of Cd/kg s.c., 48 and 24 h before assay of ALAD. Pretreatment with Zn resulted in activation of hepatic and renal ALAD and attenuated the inhibition of this enzyme by Pb in vitro. Pretreatment with Cd increased hepatic ALAD activity, and the inhibitory effect of Pb on the hepatic enzyme was attenuated in this group. In contrast with the situation in liver, pretreatment with Cd did not affect the activity of renal ALAD and did not alter the inhibitory effect of Pb on the renal enzyme. The Pb IC50 (concentration causing half-maximal inhibition) values for hepatic and renal ALAD in Zn-pretreated rats and for hepatic ALAD in Cd-pretreated rats were increased above control, whereas the IC50 for renal ALAD in Cd-pretreated rats was unchanged. Cytosolic binding patterns for the three metals were assessed by gel-filtration chromatography and disclosed that 203Pb was co-eluted with Zn and Cd bound to liver and kidney Zn-thioneins and liver Cd,Zn-thionein, although minimal binding of 203Pb to kidney Cd,Zn-thionein was observed. Estimation of the molar ratio of metals bound revealed Cd/Zn ratios of 2 and 5 for Cd,Zn-thioneins from liver and kidney respectively. The inhibition of purified ALAD by Pb was also attenuated by addition of purified Zn-thioneins and Cd,Zn-thioneins from liver and kidney in the following order: liver Zn-thionein = kidney Zn-thionein greater than liver Cd,Zn-thionein much greater than kidney Cd,Zn-thionein. Thus liver and kidney Zn-thioneins and liver Cd,Zn-thionein with a low Cd/Zn ratio readily decrease the free pool of Pb available to interact with ALAD. These data also demonstrate that the capacity of metallothionein to alter the intracellular distribution of Pb and mediate the inhibition of ALAD by Pb is dependent on the tissue source and relative metal constitution of the metallothionein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号