首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular events controlling glutamate receptor ion channel gating are complex. The movement of transmembrane domain M3 within N-methyl-d-aspartate (NMDA) receptor subunits has been suggested to be one structural determinant linking agonist binding to channel gating. Here we report that covalent modification of NR1-A652C or the analogous mutation in NR2A, -2B, -2C, or -2D by methanethiosulfonate ethylammonium (MT-SEA) occurs only in the presence of glutamate and glycine, and that modification potentiates recombinant NMDA receptor currents. The modified channels remain open even after removing glutamate and glycine from the external solution. The degree of potentiation depends on the identity of the NR2 subunit (NR2A < NR2B < NR2C,D) inversely correlating with previous measurements of channel open probability. MTSEA-induced modification of channels is associated with increased glutamate potency, increased mean single-channel open time, and slightly decreased channel conductance. Modified channels are insensitive to the competitive antagonists D-2-amino-5-phosphonovaleric acid (APV) and 7-Cl-kynurenic acid, as well as allosteric modulators of gating (extracellular protons and Zn(2+)). However, channels remain fully sensitive to Mg(2+) blockade and partially sensitive to pore block by (+)MK-801, (-)MK-801, ketamine, memantine, amantadine, and dextrorphan. The partial sensitivity to (+)MK-801 may reflect its ability to stimulate agonist unbinding from MT-SEA-modified receptors. In summary, these data suggest that the SYTANLAAF motif within M3 is a conserved and critical determinant of channel gating in all NMDA receptors.  相似文献   

2.
Mobile NMDA receptors at hippocampal synapses   总被引:30,自引:0,他引:30  
Tovar KR  Westbrook GL 《Neuron》2002,34(2):255-264
Glutamate receptors are concentrated in the postsynaptic complex of central synapses. This implies a highly organized and stable postsynaptic membrane with tightly anchored receptors. Recent reports of rapid AMPA receptor insertion and removal at synapses have challenged this view. We examined the stability of synaptic NMDA receptors on cultured hippocampal neurons using the open-channel blockers (+)-MK-801 and ketamine to tag synaptic NMDA receptors. NMDA receptor-mediated EPSCs showed an anomalous recovery following "irreversible" MK-801 block. The recovery could not be attributed to MK-801 unbinding or insertion of new receptors, suggesting that membrane receptors had moved laterally into the synapse. At least 65% of synaptic NMDA receptors were mobile. Our results indicate that NMDA receptors can move laterally between synaptic and extrasynaptic pools, providing evidence for a dynamic organization of synaptic NMDA receptors in the postsynaptic complex.  相似文献   

3.
NMDA receptors are glutamate-regulated ion channels that are of great importance for many physiological and pathophysiological conditions in the mammalian central nervous system. We have previously shown that, at low pH, glutamate decreases binding of the open-channel blocker [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten, 5,10-imine ([3H]MK-801) to NMDA receptors in the presence of 1 mM Mg2+ but not in Krebs buffer. Here, we investigated which cations that block the glutamate-induced decrease in Krebs buffer, using [3H]MK-801 binding assays in membrane preparations from the rat cerebral cortex. At pH 6.0, Na+, K+, and Ca2+ antagonized the glutamate-induced decrease with cross-over values, which is a measure of the antagonist potencies of the cations, of 81, 71, and 26 mM, respectively, in the absence of added glycine. Thus, in Krebs buffer only the concentration of Na+ (126 mM) is sufficiently high to block the glutamate-induced decrease observed at low pH. In the presence of 1 mM Mg2+ and 10 mM Ca2+ at pH 7.4, the cross-over values for Na+, K+, and Ca2+ were 264, 139, and 122 mM, respectively, in the absence of added glycine. This is the same rank order of potency as observed at pH 6.0, suggesting that the less H+-sensitive and the less Ca2+-sensitive, glutamate-induced decreases in [3H]MK-801 binding represent the same entity. The glycine site antagonists 7-chlorokynurenate (10 microM) and 7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(H)-quinoline (L-701,324; 1 microM) antagonized the glutamate-induced decrease in [3H]MK-801 binding observed in presence of Mg2+ at pH 6.0, suggesting that glycine is required together with glutamate to induce the decrease observed at low pH. These results suggest that in addition to a previously described high-affinity binding site for H+ and Ca2+ there exist a low-affinity binding site for H+, Ca2+, Na+, and K+ on NMDA receptors. The latter site may under physiological conditions be blocked by Na+ or K+, depending on the extra/intracellular localization of the modulatory site. Both the high-affinity and low-affinity cation sites mediate antagonistic effects on the glutamate- and glycine-induced decrease of the affinity of the [3H]MK-801 binding site, which may correspond to similar changes in the affinity of the voltage-sensitive Mg2+-block site inside the NMDA receptor channel pore, which in turn may affect current and Ca2+ influx through activated NMDA receptor channels.  相似文献   

4.
Modulation of the NMDA receptor by polyamines.   总被引:22,自引:0,他引:22  
Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. This site appears to be distinct from previously described binding sites for glutamate, glycine, Mg++,Zn++, and open-channel blockers such as MK-801. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neurons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of [3H]MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.  相似文献   

5.
H T Cline  R W Tsien 《Neuron》1991,6(2):259-267
Influx of Ca2+ through NMDA channels may initiate the stabilization of coactive synapses during development of the retinotectal projection in frogs. Ca2+ imaging techniques were applied to cultured tectal cells to investigate whether excitatory amino acids cause a rise in [Ca2+]i. High [K+], NMDA, and glutamate increase [Ca2+]i in about 75% of the cells. NMDA and glutamate responses were completely blocked in the absence of extracellular Ca2+ and by the NMDA receptor or channel blockers APV and MK-801. The NMDA response was also blocked by Mg2+. Quisqualate and kainate produced little or no rise in [Ca2+]i. These studies indicate that when tectal cells are exposed to the retinal ganglion cell transmitter glutamate, the predominant means of Ca2+ entry is through NMDA channels.  相似文献   

6.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

7.
Recent reports suggest that N-methyl-d-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination.  相似文献   

8.
Real-time alterations in intracellular Ca2+ ([Ca2+]i) were monitored in fluo-3-loaded cerebellar granule neurons (CGNs) exposed to the brevetoxin PbTx-1. [Ca2+]i was measured using a fluorescent plate reader (FLIPR), which measures simultaneously the mean intracellular Ca2+ change in a population of cultured cells in each well of a 96-well plate. PbTx-1 produced rapid and concentration-dependent increases in neuronal [Ca2+]i with a potency nearly identical to that determined previously for PbTx-1-induced neurotoxicity. The NMDA receptor antagonists MK-801, dextrorphan, and D(-)-2-amino-5-phosphonopentanoic acid, and tetanus toxin, an inhibitor of Ca2+-dependent exocytotic neurotransmitter release, effected significant reductions in both the integrated fluo-3 fluorescence response and excitatory amino acid release and protected CGNs against PbTx-1 neurotoxicity. The L-type Ca2+ channel antagonist nifedipine produced a modest reduction in the fluo-3 response but reduced substantially the plateau phase of the PbTx-1 increment in [Ca2+]i when combined with MK-801. When nifedipine and MK-801 were combined with the Na+/Ca2+ exchanger (reversed mode) inhibitor KB-R7943, the PbTx-1 increment in [Ca2+]i was nearly completely attenuated. These data show that Ca2+ entry into PbTx-1-exposed CGNs occurs through three primary routes: NMDA receptor ion channels, L-type Ca2+ channels, and reversal of the Na+/Ca2+ exchanger. There was a close correlation between reduction of the integrated fluo-3 fluorescence response and the level of neuroprotection afforded by blockers of each Ca2+ entry pathway; however, simultaneous blockade of L-type Ca2+ channels and the Na+/Ca2+ exchanger, although reducing the integrated [Ca2+]i response to a level below that provided by NMDA receptor blockade alone, failed to completely attenuate PbTx-1 neurotoxicity. This finding suggests that in addition to total [Ca2+]i load, neuronal vulnerability is governed principally by the NMDA receptor Ca2+ influx pathway.  相似文献   

9.
Prompted by our interest in neuroprotective agents with multiple mechanisms of action, we assessed the structure-activity relationship of a series of pentacycloundecylamine derivatives previously shown to have both L-type calcium channel blocking activity and N-methyl-d-aspartate receptor (NMDAR) antagonistic activity. We utilized a functional assay to measure NMDAR channel block using (45)Ca(2+) influx into synaptoneurosomes. The cage amine 8-benzylamino-8,11-oxapentacyclo[5.4.0.0(2,6). 0(3,10).0(5,9)]undecane (NPG1-01) proved to be the most potent experimental compound with an IC(50) of 2.98microM, while 8-amino-pentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecane had the next most potent IC(50) of 4.06microM. Increasing the polycyclic cage size of NGP1-01 from a pentacycloundecane to a tridecane cage structure, but retaining the N-benzyl moiety decreased potency 10-fold, indicating a limitation on the volume of the cage that can be accommodated in the channel binding site. In the presence of NGP1-01, NMDA/glycine-induced maximal (45)Ca(2+) influx was attenuated by 34% with an insignificant effect on agonist potency. These results are consistent with uncompetitive antagonism for this group of compounds. Radioligand binding studies with [(3)H]MK-801 or [(3)H]TCP showed little or no displacement of these ligands by pentacycloundecylamines, suggesting that the latter compounds bind to a unique site in the NMDAR channel. The pentacycloundecylamines tested represent a novel group of NMDAR antagonists that have potential as therapeutic agents for neurodegenerative diseases including Parkinson's and Alzheimer's disease.  相似文献   

10.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

11.
Cerebral endothelial cells in the rat, pig, and, most recently, human have been shown to express several types of receptors specific for glutamate. High levels of glutamate disrupt the cerebral endothelial barrier via activation of N-methyl-d-aspartate (NMDA) receptors. We have previously suggested that this glutamate-induced barrier dysfunction was oxidant dependent. Here, we provide evidence that human cerebral endothelial cells respond to glutamate by generating an intracellular oxidant stress via NMDA receptor activation. Cerebral endothelial cells loaded with the oxidant-sensitive probe dihydrorhodamine were used to measure intracellular reactive oxygen species (ROS) formation in response to glutamate receptor agonists, antagonists, and second message blockers. Glutamate (1 mM) significantly increased ROS formation compared with sham controls (30 min). This ROS response was significantly reduced by 1) MK-801, a noncompetitive NMDA receptor antagonist; 2) 8-(N,N-diethylamino)-n-octyl-3,4,5-trimethoxybenzoate, an intracellular Ca(2+) antagonist; 3) LaCl(3), an extracellular Ca(2+) channel blocker; 4) diphenyleiodonium, a heme-ferryl-containing protein inhibitor; 5) itraconazole, a cytochrome P-450 3A4 inhibitor; and 6) cyclosporine A, which prevents mitochondrial membrane pore transition required for mitochondrial-dependent ROS generation. Our results suggest that the cerebral endothelial barrier dysfunction seen in response to glutamate is Ca(2+) dependent and may require several intracellular signaling events mediated by oxidants derived from reduced nicotinamide adenine dinucleotide oxidase, cytochrome P-450, and the mitochondria.  相似文献   

12.
Ca(+)-calmodulin (Ca(2+)-CaM)-dependent protein kinase II (Ca(2+)/CaMKII) is an important regulator of cardiac ion channels, and its inhibition may be an approach for treatment of ventricular arrhythmias. Using the two-electrode voltage-clamp technique, we investigated the role of W-7, an inhibitor of Ca(2+)-occupied CaM, and KN-93, an inhibitor of Ca(2+)/CaMKII, on the K(v)4.3 channel in Xenopus laevis oocytes. W-7 caused a voltage- and concentration-dependent decrease in peak current, with IC(50) of 92.4 muM. The block was voltage dependent, with an effective electrical distance of 0.18 +/- 0.05, and use dependence was observed, suggesting that a component of W-7 inhibition of K(v)4.3 current was due to open-channel block. W-7 made recovery from open-state inactivation a biexponential process, also suggesting open-channel block. We compared the effects of W-7 with those of KN-93 after washout of 500 muM BAPTA-AM. KN-93 reduced peak current without evidence of voltage or use dependence. Both W-7 and KN-93 accelerated all components of inactivation. We used wild-type and mutated K(v)4.3 channels with mutant CaMKII consensus phosphorylation sites to examine the effects of W-7 and KN-93. In contrast to W-7, KN-93 at 35 muM selectively accelerated open-state inactivation in the wild-type vs. the mutant channel. W-7 had a significantly greater effect on recovery from inactivation in wild-type than in mutant channels. We conclude that, at certain concentrations, KN-93 selectively inhibits Ca(2+)/CaMKII activity in Xenopus oocytes and that the effects of W-7 are mediated by direct interaction with the channel pore and inhibition of Ca(2+)-CaM, as well as a change in activity of Ca(2+)-CaM-dependent enzymes, including Ca(2+)/CaMKII.  相似文献   

13.
In brain synaptic membranes not extensively washed, (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5, 10-imine ([3H]MK-801) binding was markedly inhibited in a concentration-dependent manner (at concentrations above 1 microM) by several compounds having antagonistic activity at the Ca(2+)-binding protein calmodulin. Scatchard analysis revealed that N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited the binding through a significant decrease in the density of binding sites without affecting the affinity at 10 microM. In membranes extensively washed and treated with a low concentration of Triton X-100, L-glutamic acid (Glu) drastically accelerated the initial association rate of [3H]MK-801 binding with glycine (Gly), almost doubling the initial association rate found in the presence of Glu alone. The addition of W-7 invariably reduced the initial association rate observed in the presence of either Glu alone or both Glu and Gly, without significantly altering the dissociation rate of bound [3H]-MK-801, irrespective of the presence of the two stimulatory amino acids. The maximal potencies of Glu, Gly, and spermidine in potentiating the binding were all attenuated by W-7. These results suggest that calmodulin antagonists may interfere with opening processes of an ion channel associated with an N-methyl-D-aspartate-sensitive subclass of excitatory amino acid receptors in rat brain.  相似文献   

14.
Blockade of ionic currents through NMDA receptor channels in acutely isolated rat hippocampal neurons by tetraalkylammonium compounds, 9-aminoacridine and Mg2+ was studied using whole-cell patch-clamp technique. The currents through NMDA channels were elicited by 100 microM aspartate application in a Mg(2+)-free 3 microM glycine-containing solution. An analysis of the kinetics, charge transfer and dependencies of the stationary current inhibition on the membrane potential and the agonist and the blocker concentrations showed that the blockers affect NMDA channel closure, desensitization and the agonist dissociation in different ways. The size of the blocker proved to be the determinant of the blocker action on the NMDA channel gating machinery: large blockers prevented the channel closure and/or desensitization, smaller ones only partly affected these processes, while the smallest did not affect at all. It was shown that the apparent blocker affinity to the channel, 1/IC50, depended not only on the microscopic dissociation constant, Kd, but also on the number of the blocker binding sites, their mutual dependence, and, which is much more important, on the blocker interaction with the channel gating machinery. Based upon the data obtained, there was advanced hypotheses on the NMDA channel geometry and the structure of its gating machinery. The diameter of the channel at the level of the activation gate was estimated as 11 A.  相似文献   

15.
The selectivity filter of the cation channel TRPM4   总被引:5,自引:0,他引:5  
Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca(2+). In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca(2+)-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 ((981)EDMDVA(986)) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca(2+), voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca(2+) and Mg(2+) as well as Ca(2+) permeation. Neutralization of Glu(981) resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp(982) yielded a functional channel that exhibited extremely fast desensitization (tau < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp(984) resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln(977) by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca(2+) permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.  相似文献   

16.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

17.
NMDA receptor (NMDAR) channels allow Ca(2+) influx only during correlated activation of both pre- and postsynaptic cells; a Mg(2+) block mechanism suppresses NMDAR activity when the postsynaptic cell is inactive. Although the importance of NMDARs in associative learning and long-term memory (LTM) formation has been demonstrated, the role of Mg(2+) block in these processes remains unclear. Using transgenic flies expressing NMDARs defective for Mg(2+) block, we found that Mg(2+) block mutants are defective for LTM formation but not associative learning. We demonstrate that LTM-dependent increases in expression of synaptic genes, including homer, staufen, and activin, are abolished in flies expressing Mg(2+) block defective NMDARs. Furthermore, we show that genetic and pharmacological reduction of Mg(2+) block significantly increases expression of a CREB repressor isoform. Our results suggest that Mg(2+) block of NMDARs functions to suppress basal expression of a CREB repressor, thus permitting CREB-dependent gene expression upon LTM induction.  相似文献   

18.
The epithelial Ca(2+) channel (ECaC), which was recently cloned from rabbit kidney, exhibits distinctive properties that support a facilitating role in transcellular Ca(2+) (re)absorption. ECaC is structurally related to the family of six transmembrane-spanning ion channels with a pore-forming region between S5 and S6. Using point mutants of the conserved negatively charged amino acids present in the putative pore, we have identified a single aspartate residue that determines Ca(2+) permeation of ECaC and modulation by extracellular Mg(2+). Mutation of the aspartate residue, D542A, abolishes Ca(2+) permeation and Ca(2+)-dependent current decay as well as block by extracellular Mg(2+), whereas monovalent cations still permeate the mutant channel. Variation of the side chain length in mutations D542N, D542E, and D542M attenuated Ca(2+) permeability and Ca(2+)-dependent current decay. Block of monovalent currents through ECaC by Mg(2+) was decreased. Exchanging the aspartate residue for a positively charged amino acid, D542K, resulted in a nonfunctional channel. Mutations of two neighboring negatively charged residues, i.e. Glu(535) and Asp(550), had only minor effects on Ca(2+) permeation properties.  相似文献   

19.
Although large quantities of glutamate are found in the carotid body, to date this excitatory neurotransmitter has not been assigned a role in chemoreception. To examine the possibility that glutamate and its N-methyl-d-aspartate (NMDA) receptors play a role in acclimatization after exposure to cyclic intermittent hypoxia (CIH), we exposed male Sprague-Dawley rats to cyclic hypoxia or to room air sham (Sham) for 8 h/day for 3 wk. Using RT-PCR, Western blot analysis, and immunohistochemistry, we found that ionotropic NMDA receptors, including NMDAR1, NMDAR2A, NMDAR2A/2B, are strongly expressed in the carotid body and colocalize with tyrosine hydroxylase in glomus cells. CIH exposure enhanced the expression of NMDAR1 and NMDAR2A/2B but did not substantially change the level of NMDAR2A. We assessed in vivo carotid sinus nerve activity (CSNA) at baseline, in response to acute hypoxia, in response to infused NMDA, and in response to infused endothelin-1 (ET-1) with and without MK-801, an NMDA receptor blocker. Infusion of NMDA augmented CSNA in CIH rats (124.61 +/- 2.64% of baseline) but not in sham-exposed rats. Administration of MK-801 did not alter baseline activity or response to acute hypoxia, in either CIH or sham animals but did reduce the effect of ET-1 infusion on CSNA (CSNA after ET-1 = 160.96 +/- 8.05% of baseline; ET-1 after MK-801 = 118.56 +/- 9.12%). We conclude that 3-wk CIH exposure increases expression of NMDA functional receptors in rats, suggesting glutamate and its receptors may play a role in hypoxic acclimatization to CIH.  相似文献   

20.
Sun W  Wessinger WD 《Life sciences》2004,75(12):1405-1415
The ability of non-competitive NMDA antagonists and other selected compounds to inhibit [3H]MK-801 binding to the NMDA receptor in brain membranes was evaluated in female, dark Agouti rats. In homologous competition binding studies the average apparent affinity (KD) of [3H]MK-801 for its binding site was 5.5 nM and the binding site density (Bmax) was 1.83 pmol/mg protein. Inhibition of [3H]MK-801 binding by non-competitive NMDA antagonists was best described with a one-site competition model and the average Hill coefficients were -1. A series of eight non-competitive NMDA antagonists inhibited [3H]MK-801 binding with the following rank order of affinity (K(i), nM): MK-801 (5.5) > dexoxadrol (21.5) > or = TCP (24.2) > phencyclidine (100.8) > (+)-SKF 10,047 (357.7) > dextrorphan (405.2) > ketamine (922.2) > dextromethorphan (2913). These inhibition binding constants determined in dark Agouti rat brain membranes were significantly correlated (P = 0.0002; r2 = 0.95) with previously reported values determined in Sprague-Dawley rats [Wong et al., 1988, J. Neurochem. 50, 274-281]. Despite significant differences in metabolic capability between these strains, the central nervous system NMDA receptor ion channel shares similar characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号