首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenoestrogens, phytoestrogens and synthetic estrogens, are able to bind to estrogen receptors, and to mimic estrogenic activities in a cell and tissue specific manner. For the characterization of environmental estrogens mainly mammary derived and yeast based models have been used. The aim of this study was therefore to assess selected natural and synthetic compounds in an endometrial derived model. We measured the relative estrogenic potency of phytoestrogens (genistein, daidzein, coumestrol, some naringenins), synthetic estrogens (bisphenol A, octylphenol, nonylphenol, o,p′-DDT), mycoestrogen (zearalanone) as well as extracts of Cimicifuga racemosa on alkaline phosphatase (AlkP) activity in the endometrial derived adenocarcinoma cell line Ishikawa. We used a modified multiwell plate in vitro bioassay based on the estrogen-specific and dose-dependent enhancement of AlkP activity in this cell line. Estradiol, which induced AlkP at levels as low as 10−8 M, was used as positive control. Most of the compounds studied showed a clear dose-dependent estrogenic effect. Compared to the vehicle control (ethanol) all phyto- and mycoestrogens, stimulated the AlkP activity 2–4-fold at a concentration of 10−6 M. The synthetic chemicals bisphenol A and nonylphenol showed an effect at 10−6 M, octylphenol at 10−5 M. Effects of o,p′-DTT could not be measured. ICI 182,780, a pure estrogen receptor antagonist, significantly inhibited these effects. The latter result demonstrated the estrogen receptor dependency of this process. In summary, most of the phytoestrogens and industrial chemicals tested, behaved as estrogen receptor agonists in terms of the stimulation of AlkP activity.  相似文献   

2.
Rat uterus fixed overnight in buffered formalin retains the ability to specifically bind estradiol. However, the estrogen binding property of fixed tissue appears preferentially localized in the nuclear fraction regardless of hormonal status. Furthermore, the quantity of the nuclear estrogen receptor in fresh or fixed uterus is virtually identical in the presence or absence of estrogenic hormone. Yet, while both tissue preparations exhibit equivalent increases in the total nuclear receptor occupancy after hormone exposure, only the fresh uterus contains a major cytosolic estrogen binder which decreases in availability upon the estrogen-induced elevation of the nuclear bound steroid. However, the cytosolic estrogen receptor exhibits a significant loss in its ligand binding property after formalin exposure. Thus, the preferential localization of estrogen binding in the nuclear fraction of fixed whole tissue may just reflect that only the tightly bound nuclear estrogen receptor's functional and/or structural integrity survives long-term formation fixation. Our observation of estrogen binding in preserved tissue may also be a clinically useful tool in therapy analysis.  相似文献   

3.
Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.  相似文献   

4.
A diastereomerically pure series of 7alpha-thioestratrienes was prepared and evaluated for its affinity for both the human estrogen receptor alpha and the more recently discovered estrogen receptor beta. The functional estrogenic activities of the compounds were measured in a MCF-7 ERE-tk-luciferase assay. The activities and selectivities of the compounds were sensitive to the nature of the thioether side chain.  相似文献   

5.
6.
7.
Progesterone antagonists (PAs, antiprogestins) can modulate estrogenic effects in various estrogen-dependent tissues. These modulatory effects are complex and depend on species, tissue, type of compound, dose, and duration of treatment. In non-human primates, PAs, including mifepristone, ZK 137 316 and ZK 230 211, inhibit endometrial proliferation and induce amenorrhea. When administered chronically at relatively low doses, these compounds block the mitotic activity of endometrial epithelium and induce stromal compaction in a dose-dependent manner in both spayed and intact monkeys at high estradiol concentrations. These effects were accompanied by an atrophy of spiral arteries. The antiproliferative effects were endometrium-specific, since the estrogenic effects in the oviduct and vagina were not inhibited by PAs. Similar endometrial antiproliferative effects were also found after treatment with the progesterone receptor modulator (PRM), mesoprogestin J1042. The endometrial antiproliferative effects of PAs, particularly within the endometrial glands, were also observed in spayed rabbits. In spayed rats, however, the PAs did not inhibit, but rather enhanced, various estrogen responses, including endometrial proliferation, pointing to species-specific differences. In conclusion, our studies indicate that both pure PAs and PRMs selectively inhibit estrogen-dependent endometrial proliferation in the primate endometrium without affecting estrogenic response in other estrogen-dependent tissues or inducing unscheduled bleeding. Our studies indicate that the spiral arteries, which are unique to the primate endometrium, are the primary targets that are damaged or inhibited by PAs and PRMs. The damage to these unique vessels may underlay the paradoxical, endometrium-specific, antiproliferative effects of these compounds. Hence, the properties of PAs and PRMs (mesoprogestins) open up new applications in gynecological therapy and hormone replacement therapy.  相似文献   

8.
The aminosteroid U73122 is generally used as a specific inhibitor of phosphoinositide specific phospholipase C (PLC) and typically, the structurally related compound U73343 is used as control, since it lacks PLC inhibitory activity. We have found that both compounds possess strong estrogenic activity and that this activity is mediated by the estrogen receptors (ER) alpha and beta. Although no direct evidence for binding of U73122 and U73343 to the ER could be provided, the estrogenic activity of the aminosteroids requires an intact ER hormone binding pocket. Given the chemical structure of the two aminosteroids, they may be converted to an estrogenic derivative by chemical degradation or an enzymatic metabolization reaction. Our data indicate that additional care should be taken in the interpretation of the effects of U73122 in cells expressing ER.  相似文献   

9.
Phytoestrogens, or naturally occurring estrogen-mimicking compounds, are found in many human plant foods, such as soybeans (Glycine max) and other legumes. Because the consumption of phytoestrogens may result in both health benefits of protecting against estrogen-dependent cancers and reproductive costs of disrupting the developing endocrine system, considerable biomedical research has been focused on the physiological and behavioral effects of these compounds. Despite this interest, little is known about the occurrence of phytoestrogens in the diets of wild primates, nor their likely evolutionary importance. We investigated the prevalence of estrogenic plant foods in the diets of two folivorous primate species, the red colobus monkey (Procolobus rufomitratus) of Kibale National Park and mountain gorilla (Gorilla beringei) of Bwindi Impenetrable National Park, both in Uganda. To examine plant foods for estrogenic activity, we screened 44 plant items (species and part) comprising 78.4% of the diet of red colobus monkeys and 53 plant items comprising 85.2% of the diet of mountain gorillas using transient transfection assays. At least 10.6% of the red colobus diet and 8.8% of the gorilla diet had estrogenic activity. This was mainly the result of the red colobus eating three estrogenic staple foods and the gorillas eating one estrogenic staple food. All estrogenic plants exhibited estrogen receptor (ER) subtype selectivity, as their phytoestrogens activated ERβ, but not ERα. These results demonstrate that estrogenic plant foods are routinely consumed by two folivorous primate species. Phytoestrogens in the wild plant foods of these two species and many other wild primates may have important implications for understanding primate reproductive ecology.  相似文献   

10.
The human endometrial model for in vitro evaluation of estrogenic, estrogen antagonistic, and progestagenic effects of endogenous steroids, natural products or synthetic drugs was applied to the study of Org OD-14, an analog of norethynodrel developed by Organon International, Oss, The Netherlands, and some of its metabolites. Estrogen antagonistic actions of Org OD-14 and its 4-ene isomer were evident from their ability to suppress the enhancement of PGF2 alpha output elicited by estradiol on fragments of secretory endometrium and to decrease the rate of output of the prostaglandin by proliferative tissue, already stimulated by endogenous estrogens. These inhibitory effects were similar to those obtained with progesterone and do not appear to involve competition for the estrogen receptor since the antiestrogen 4-hydroxyamoxifen was not active in parallel incubations of proliferative endometrium. The progestagenic effects of Org OD-14 and its 4-ene isomer were also evident from their capability to enhance estradiol 17 beta-dehydrogenase activity and glycogen accumulation in specimens of proliferative endometrium. Estrogenic effects of the 3 alpha- and 3 beta-hydroxy metabolites of Org OD-14 were demonstrated by their stimulatory actions on PGF2 alpha output during incubations of secretory endometrium. The estrogenic and progestagenic actions of these compounds are in general agreement with their relative affinity for binding to the estradiol and progesterone receptors, although their actions may be influenced by intracellular metabolism in the endometrial tissue. For instance, the similarity in progestagenic activity of Org OD-14 and the 4-ene isomer, contrasting with their different affinities for the progesterone receptor, may result from in situ isomerization of Org OD-14 to the 4-ene metabolite.  相似文献   

11.
雌激素受体亚型及其配体调节基因转录机制的研究   总被引:9,自引:0,他引:9  
An SJ  Zhang YX 《生理科学进展》2002,33(4):309-312
本文综述雌激素受体亚型(ERα和ERβ)的结构,功能,组织分布,生理作用及雌激素受体配体调节基因转录的机制,目的是深入系统地了解植物雌激素和选择性雌激素受体调节剂的作用路径及其组织特异性的发生机制,最终为提高雌激素类药物的选择性,优化以临床为基础的药物设计提供一条较为系统的思路。结果表明,ERα和ERβ对不同雌激素类化合物产生不同应答,配体的结构不同,调节基因转录的路径不同和募集的辅调节蛋白的不同是雌激素受体两种亚型组织特异性激活或抑制的主要原因。  相似文献   

12.
13.
14.
In order to test the estrogenic activity of sterol oxidation products from cholesterol and phytosterols, an estrogen-dependent gene expression assay was performed in estrogen receptor alpha-stably transformed HeLa cells. The ranking of the estrogenic potency of these compounds was different: 17beta-estradiol > genistein > beta-epoxycholesterol = daidzein = cholestanetriol = 22(R)-hydroxycholesterol = 20(S)-hydroxycholesterol = sitostanetriol > campestanetriol = beta-epoxysitosterol = 7beta-hydroxycholesterol. These compounds were not estrogenic in estrogen receptor-negative HeLa cells.  相似文献   

15.
Environmental estrogenic endocrine disruptors are a health concern. Here we constructed a dual cell-line green fluorescence protein (GFP) expression system to identify and study endocrine disrupting compounds with activities of estrogen receptor agonists or antagonists. Human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells were infected with a two tandem estrogen response elements--E4 promoter-GFP reporter gene construct. The use of GFP reporter enabled direct and simple evaluations of cell responses. GFP intensity in stably transfected MCF7-GFP and Ishikawa-GFP cells was dose-responsive to 17-beta-estradiol, diethylstilbestrol, 2-hydroxyestradiol, and environmental toxins bisphenol A, genistein and o-p'-DDT. Raloxifene and tamoxifen were effective antiestrogens in MCF7-GFP cells, but acted as partial estrogen receptor agonists in Ishikawa-GFP cells at concentrations of 0.1 nM and above. No synergistic effect was observed in chemical combinations between organochlorine pesticides methoxychlor, o-p'-DDT, p-p'-DDT, nor between estradiol and estrone. In summary, for the first time the effects of estrogen receptor agonists or antagonists were compared between mammary and endometrial cancer cells both stably expressing identical plasmids with GFP reporter genes under the control of tandem estrogen response elements. This dual cell-line system provides a rapid method and sensitive assay to identify environmental estrogens, antiestrogens, selective estrogen receptor modulators and to study their tissue specific effects and chemical interactions. Such a system is especially useful for direct and parallel toxicity assessments with a microfluidic cell culture device.  相似文献   

16.
Diethylstilbestrol (DES) and certain chemically structural derivatives and analogs, indenestrol A (IA), indenestrol B (IB), indanestrol (IN), and pseudo-DES (PD), have been used as probes to examine various estrogenic responses previously considered interrelated and obligatory to the stimulation of uterine growth. All the analogs had poor uterotropic activity in vivo which ranged from 10-200 times less than that of estradiol or DES. The poor uterotropic activity was not due to poor binding affinity for the receptor. All compounds except IN interacted with the mouse uterine estrogen receptor with high affinity (approximately Ka 1.5-2.2 X 10(10) M-1). In addition, the compounds were able to translocate similar levels of receptor to the nucleus in vivo. Nuclear retention and occupancy of the estrogen receptor by the compounds was comparable to the patterns produced by DES or estradiol. The activity of uterine tissue responses was investigated during treatment with the compounds. Only IA stimulated uterine glucose-6-phosphate dehydrogenase to significant levels similar to DES or estradiol. Uterine progesterone receptor was induced to varying degrees by all compounds; the indenestrol isomers (IA and IB) were the most active. Uterine DNA synthesis was marginally stimulated by the derivatives and analogs except for IB which showed a response increase comparable to DES or estradiol. Because of the differential stimulation, these data suggest that in uterine tissue estrogen receptor stimulates certain biochemical responses independently and not in concert. The ability of a particular response to be increased may depend on the chemical nature of the ligand receptor complex and its interaction at genomic sites.  相似文献   

17.
Tibolone, selective estrogen receptor modulators (SERMs) like tamoxifen and raloxifene, and estrogen (±progestogen) treatments prevent bone loss in postmenopausal women. They exert their effects on bone via the estrogen receptor (ER) and the increase in bone mass is due to resorption inhibition. The effect of SERMs on bone mineral density is less than that with the other treatments, but the SERM raloxifene still has a positive effect on vertebral fractures. In contrast to tibolone and estrogens (±progestogen), SERMs do not treat climacteric complaints, whilst estrogen plus progestogen treatments cause a high incidence of bleeding. Estrogen plus progestogen combinations have compromising effects on the breast. Tibolone and SERMs do not stimulate the breast or endometrium. Unlike SERMs, tibolone does not posses antagonistic biological effects via the ER in these tissues. Estrogenic stimulation in these tissues is prevented by local metabolism and inhibition of steroid metabolizing enzymes by tibolone and its metabolites. SERMs and estrogen (±progestogen) treatments increase the risk of venous thromboembolism (VTE), whilst estrogen (±progestogen) combinations have unwanted effects on cardiovascular events. So far, no detrimental effects of tibolone have been observed with respect to VTE or cardiovascular events. The clinical profile of tibolone therefore has advantages over those of other treatment modalities. It is also clear that tibolone is a unique compound with a specific mode of action and that it belongs to a separate class of compounds that can best be described as selective, tissue estrogenic activity regulators (STEARs).  相似文献   

18.
Fusarium sp. contaminated feedstuffs elicit adverse estrogenic effects in several commercially important animal species via the mycotoxin zearalenone. An estrogenically active synthetic derivative, zearalanol, is used as an anabolic agent in cattle. Since estrogens can irreversibly alter target tissue development, we investigated the estrogenic activity of these compounds in the neonatal rat uterus. Both induced dose-dependent premature uterine growth when injected daily on postnatal days 1-5 (ED50 = 1.3 mg/kg BW). Nuclear estrogen receptor levels dramatically increased 1 hour after either a single injection on day 5 or after five daily injections. In 5-day-old animals, the translocated nuclear receptor was characterized as a single class of binding sites with a dissociation constant (KD) for estradiol (E2) of 1 nM. At 15 days, zearalanol-treated animals showed greater uterine nuclear receptor retention than zearalenone-treated animals. In 5-day-old animals, single mycotoxin doses induced five fold elevations of ornithine decarboxylase (ODC) at 6 hours. Unlike the growth response, ODC dose-response studies showed zearalanol to be about 20-fold more effective than zearalenone. Time course studies revealed that a low dose of zearalenone, but not of zearalanol, resulted in a shift in peak activity from 6 to 8 hours. These data suggest that metabolism of zearalenone may be important in short-term pharmacodynamics. In a competitive binding assay, neither compound competed [3H]E2 from the E2 binding site on alpha-fetoprotein. We conclude that the uterine growth response and ODC induction demonstrate the neonatal estrogenic action of these mycotoxins, apparently mediated via the estrogen receptor. The greater effectiveness of zearalanol in inducing ODC may be related to nuclear retention and/or zearalenone metabolism.  相似文献   

19.
Phytoestrogens are the natural compounds isolated from plants, which are structurally similar to animal estrogen, 17β-estradiol. Tectoridin, a major isoflavone isolated from the rhizome of Belamcanda chinensis. Tectoridin is known as a phytoestrogen, however, the molecular mechanisms underlying its estrogenic effect are remained unclear. In this study we investigated the estrogenic signaling triggered by tectoridin as compared to a famous phytoestrogen, genistein in MCF-7 human breast cancer cells. Tectoridin scarcely binds to ER α as compared to 17β-estradiol and genistein. Despite poor binding to ER α, tectoridin induced potent estrogenic effects, namely recovery of the population of cells in the S-phase after serum starvation, transactivation of the estrogen response element, and induction of MCF-7 cell proliferation. The tectoridin-induced estrogenic effect was severely abrogated by treatment with U0126, a specific MEK1/2 inhibitor. Tectoridin promoted phosphorylation of ERK1/2, but did not affect phosphorylation of ER α at Ser118. It also increased cellular accumulation of cAMP, a hallmark of GPR30-mediated estrogen signaling. These data imply that tectoridin exerts its estrogenic effect mainly via the GPR30 and ERK-mediated rapid nongenomic estrogen signaling pathway. This property of tectoridin sets it aside from genistein where it exerts the estrogenic effects via both an ER-dependent genomic pathway and a GPR30-dependent nongenomic pathway.  相似文献   

20.
In order to test the estrogenic activity of sterol oxidation products from cholesterol and phytosterols, an estrogen-dependent gene expression assay was performed in estrogen receptor α-stably transformed HeLa cells. The ranking of the estrogenic potency of these compounds was different: 17β-estradiol >> genistein >> β-epoxycholesterol = daidzein = cholestanetriol = 22(R)-hydroxycholesterol = 20(S)-hydroxycholesterol = sitostanetriol > campestanetriol = β-epoxysitosterol = 7β-hydroxycholesterol. These compounds were not estrogenic in estrogen receptor-negative HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号