首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The evolution of erect posture and locomotion continues to be a major focus of interest among paleoanthropologists and functional morphologists. To date, virtually all of our knowledge about the functional role of the back muscles in the evolution of bipedalism is based on human experimental data. In order to broaden our evolutionary perspective on the vertebral region, we have undertaken an electromyographic (EMG) analysis of three deep back muscles (multifidus, longissimus thoracis, iliocostalis lumborum) in the chimpanzee (Pan troglodytes) and gibbon (Hylobates lar) during bipedal walking. The recruitment patterns of these three muscles seen in the chimpanzee closely parallel those observed in the gibbon. The activity patterns of multifidus and longissimus are more similar to each other than either is to iliocostalis. Iliocostalis recruitment is clearly related to contact by the contralateral limb during bipedal walking in both species. It is suggested that in both the chimpanzee and gibbon, multifidus controls trunk movement primarily in the sagittal plane, iliocostalis responds to and adjusts movement in the frontal plane, while longissimus contributes to both of these functions. In many respects, the activity patterns shared by the chimpanzee and gibbon are quite consistent with recent human experimental data. This suggests a basic similarity in the mechanical constraints placed on the back during bipedalism among these three hominoids. Thus, the acquisition of habitual bipedalism in humans probably involved not so much a major change in back muscle action or function, but rather an improvement in the mechanical advantages and architecture of these muscles.  相似文献   

3.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

4.
The aim of the present study was to evaluate the viability of a relationship between the temporal activation pattern of parts of the erector spinae muscle and endurance. Seven subjects performed intermittent isometric contractions [4 s at 7007o maximal voluntary contraction (MVC), 2 s rest] until exhaustion, during which the electromyographical (EMG) activity of the multifidus, iliocostalis thoracis and longissimus muscle segments was recorded. Endurance was defined as the time until exhaustion. Subjects were divided into a high and a low endurance group. The high endurance group showed significantly more variability of EMG amplitude over succeeding contractions. This group demonstrated significantly more alternations of EMG activity between parts of the muscle also. Variability of the EMG amplitude within the contractions did not differ between the groups, nor did MVC. The results indicated that alternating activity between different parts of the erector spinae muscle may function to postpone exhaustion of this muscle as a whole.  相似文献   

5.
This review focuses on the role of the paraspinal muscles in relation to the development and existence of low back pain. It begins with a discussion of the deficits in paraspinal muscle strength and fatigue-resistance observed in low back pain patients and addresses the issue of ‘cause or effect’ with respect to muscle dysfunction and back pain. Our current knowledge regarding the ‘normal’ fibre type characteristics of the human erector spinae is then presented and the influence of these fibre type characteristics on the muscle's performance capacity is discussed. Alterations in the ‘microanatomy’ of the musculature in connection with low back pain, and the associated implications for the performance capacity of the patient, are then considered. Finally, a number of outstanding issues in relation to the clinical significance of back muscle dysfunction are identified, leading to the proposal of areas for future research.  相似文献   

6.
In the present work, a generic model for the prediction of moment-angle characteristics in individual human skeletal muscles is presented. The model's prediction is based on the equation M = V x Lo(-1)sigma c cos phi x d, where M, V, and Lo are the moment-generating potential of the muscle, the muscle volume and the optimal muscle fibre length, respectively, and sigma, phi and d are the stress-generating potential of the muscle fibres, their pennation angle and the tendon moment arm length, respectively, at any given joint angle. The input parameters V, Lo, sigma, phi and d can be measured or derived mechanistically. This eliminates the common problem of the necessity to estimate one or more of the input parameters in the model by fitting its outcome to experimental results often inappropriate for the function modelled. The model's output was validated by comparisons with the moment-angle characteristics of the gastrocnemius (GS) and tibialis anterior (TA) muscles in six men, determined experimentally using voluntary contractions at several combinations of ankle and knee joint angles for the GS muscle and electrical stimulation for the TA muscle. Although the model predicted realistically the pattern of moment-angle relationship in both muscles, it consistently overestimated the GS muscle M and consistently underestimated the TA muscle M, with the difference gradually increasing from dorsiflexion to plantarflexion in both cases. The average difference between predicted and measured M was 14% for the GS muscle and 10% for the TA muscle. Approximating the muscle fibres as a single sarcomere in both muscles and failing to achieve complete TA muscle activation by electrical stimulation may largely explain the differences between theory and experiment.  相似文献   

7.
Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15 lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p < 0.0001 and p = 0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p = 0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15 lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction.  相似文献   

8.
Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16 × 4) grid, 10 mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16 × 2 electrode grids (IED = 10 mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1 bow/s) or detaché tip/tail (8 bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A “muscle activity index” (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of backrest support, especially for violin players. Back muscles of violin and cello players were activated asymmetrically, specifically in fast movements (detaché tip/tail). These findings demonstrate the sensitivity and stability of the technique and justify more extensive investigation following this proof of concept.  相似文献   

9.
The mitral valve annulus is a complex and irregular component of the mitral valve apparatus, serving both a structural and sphincteric role. We have sought to determine the mechanical properties of the mitral valve annulus segmentally. Twenty porcine hearts were dissected to isolate the annulus. The annulus was segmented into four sections: anterior, posterior, and left and right commissural sections. Ten of these were tensile tested to failure as control samples. The remaining ten were digested in order to fully isolate the annulus from the myocardium, and subsequently tensile tested to failure. Histological samples of each segment were analysed to determine collagen/annular content. Whole segments of muscular annulus were tensile tested to failure; the stress and strain at failure and location of failure were determined in these larger specimens. Our results demonstrated that the anterior annulus is stiffer than the posterior segment by a factor of approximately 27 at a 2% strain level, and approximately 13 at a 6% strain. There is a trend in the results that identifies that the muscular annulus is stiffest at the right commissural segment, while the posterior segment tends to be the least stiff. The stiffness of the samples can be correlated with the area associated with the dense collagen annulus using histological analysis. Finally, the weakest section of the mitral valve annulus was identified as the intersection of the right commissural segment and the posterior segment.  相似文献   

10.
Possible tradeoffs between efficiency of water transport and mechanical strength were examined in stems of two congeneric pairs of co-occurring chaparral shrubs. First, since previously published results indicated that Adenostoma sparsifolium (Rosaceae) had greater specific conductivity (k s or hydraulic conductivity per xylem transverse area) than A. fasciculatum, it was hypothesized that A. sparsifolium would have greater vessel lumen area per square millimeter of xylem area, and less mechanical strength, than A. fasciculatum. Secondly, since Ceanothus megacarpus (Rhamnaceae) is a non-sprouter (unable to sprout from the root crown following fire or other major disturbance) whereas C. spinosus is a sprouter and thus able to form new stems following disturbance, it was hypothesized that C. megacarpus would have greater mechanical strength, but lower k s, than C. spinosus. Both hypotheses were supported. Based upon computer-aided image analyses, A. sparsifolum had significantly higher mean and maximum vessel diameters (16.4, 40.5 vs. 14.6, 35.7 μm), a 34% greater percent vessel lumen area, and a two-fold greater measured and theoretical k s than A. fasciculatum. This corresponded to 14% lower stem density (wet weight/volume) and less mechanical strength, with a 37% lower modulus of elasticity (MOE) and a 30% lower modulus of rupture (MOR) than A. fasciculatum. Similarly, C.␣spinosus had a significantly higher maximum vessel diameter (52.7 vs. 41.8 μm) and a 92% higher theoretical k s (and 43% higher measured k s) than C. megacarpus. This corresponded to a 9% lower stem density and 20% lower MOR than for C. megacarpus. Thus, at least within these two congeneric pairs of chaparral shrubs growing together in the same habitat, there may be tradeoffs between mechanical strength and conductive efficiency of the stem xylem which correspond to differences in transport physiology and life history traits of sprouter versus non-sprouter species.  相似文献   

11.
PurposeTo establish intra- and inter-session reliability of high-density surface electromyography (HDEMG)-derived parameters from the thoracic erector spinae (ES) during static and dynamic goal-directed voluntary movements of the trunk, and during functional reaching tasks.MethodsTwenty participants performed: 1) static trunk extension, 2) dynamic trunk forward and lateral flexion, and 3) multidirectional functional reaching tasks on two occasions separated by 7.5 ± 1.2 days. Muscle activity was recorded bilaterally from the thoracic ES. Root mean square (RMS), coordinates of the barycentre, mean frequency (MNF), and entropy were derived from the HDEMG signals. Reliability was determined with intraclass correlation coefficient (ICC), coefficient of variation, and standard error of measurement.ResultsGood-to-excellent intra-session reliability was found for all parameters and tasks (ICC: 0.79-0.99), whereas inter-session reliability varied across tasks. Static tasks demonstrated higher reliability in most parameters compared to functional and dynamic tasks. Absolute RMS and MNF showed the highest overall reliability across tasks (ICC: 0.66-0.98), while reliability of the barycentre was influenced by the direction of the movements.ConclusionRMS and MNF derived from HDEMG show consistent inter-session reliability in goal-directed voluntary movements of the trunk and reaching tasks, whereas the measures of the barycentre and entropy demonstrate task-dependent reliability.  相似文献   

12.
Striated muscle is a linear motor whose properties have been defined in terms of uniaxial structures. The question addressed here is what contribution is made to the properties of this motor by extramyofilament cytoskeletal structures that are not aligned in parallel with the myofilaments. This question arose from observations that transverse loads increase muscle force production in diaphragm but not in the hindlimb muscle, thereby indicating the presence of structures that couple longitudinal and transverse properties of diaphragmatic muscle. Furthermore, we find that the diaphragms of null mutants for the cytoskeletal protein desmin show 1) significant reductions in coupling between the longitudinal and transverse properties, indicating for the first time a role for a specific protein in integrating the three-dimensional mechanical properties of muscle, 2) significant reductions in the stiffness and viscoelasticity of muscle, and 3) significant increases in tetanic force production. Thus desmin serves a complex mechanical function in diaphragm muscle by contributing both to passive stiffness and viscoelasticity and to modulation of active force production in a three-dimensional structural network. Our finding changes the paradigm of force transmission among cells by placing our understanding of the function of the cytoskeleton in the context of the structural and mechanical complexity of muscles.  相似文献   

13.
A modified Cybex II isokinetic dynamometer was used to evaluate the problems associated with measuring the concentric force-velocity characteristics of human knee extensor muscles. Three contraction protocols were investigated, simple voluntary contractions (VC); releases from maximal voluntary isometric contractions (VR) and releases from. isometric femoral nerve stimulated contractions (FNR). Percutaneous stimulation of the quadriceps was unsuitable for dynamic contractions as the proportion of the muscle activated varied with the angle of knee flexion. Isometric length-tension relationships and isokinetic contractions at seven angular velocities between 0.5 and 5.2 rad · s–1 were recorded in five subjects. During isometric and slow dynamic contractions the voluntary forces were often greater than those obtained by femoral nerve stimulation, probably due to subjects stretching the rectus femoris during voluntary manoeuvres. It was found that the VC protocol produced acceptable isokinetic force recordings only at velocities below 3.1 rad · s–1 in most subjects whilst VR contractions resulted in unexpectedly low forces at velocities below 1.57 rad · s–1. Of the three techniques employed, FNR, although uncomfortable for subjects, provided the most accurate and reliable method of measuring force-velocity characteristics of knee extensor muscles. FNR contractions produced a force-velocity curve which showed a smooth decline in force with increasing velocity up to 5.2 rad · s–1. VC contractions appear to be an acceptable alternative for testing the muscles provided the angular velocity is less than 3.1 rad · s–1 and the subjects can be prevented from stretching the rectus femoris during the movement.  相似文献   

14.
Analysis of the passive mechanical properties of rat carotid arteries   总被引:5,自引:1,他引:4  
The passive mechanical properties of rat carotid arteries were studied in vitro. Using a tensile testing machine and a piston pump, intact segments of carotid arteries were subjected to large deformations both in the longitudinal and circumferential directions. Internal pressure, external diameter, length and longitudinal force were measured during the experiment and compared with the in vivo dimensions of the segments prior to excision. The anisotropic mechanical properties of the vessel wall material were analyzed using incremental elastic moduli and incremental Poisson's ratios. The results suggest that there is a characteristic deformation pattern common to all vessels investigated which is highly correlated with the conditions of loading that occur in vivo. That is, under average physiological deformation of the vessel, the longitudinal force is nearly independent of internal pressure. In this range of loading the circumferential incremental elastic modulus is nearly independent of longitudinal strain. However, the longitudinal and radial incremental elastic moduli vary significantly with deformation in this direction. The values of the moduli in all three directions increase with raising internal pressure. The weak coupling between circumferential and longitudinal direction in the wall material of carotid arteries is shown by the small value of the corresponding incremental Poisson's ratios.  相似文献   

15.
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that(i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties.(ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.  相似文献   

16.
The jaw apparatus, or lantern, of sea-urchins contains five pairs of retractor and protractor muscles which are responsible for lantern displacement. Using intact retractor or protractor groups, the force-length relations of these muscles were compared in two taxonomically distant species, Paracentrotus lividus and Stylocidaris affinis. The total contractile forces generated by the muscles can be resolved into vertical and horizontal components. It was found that the vertical component of the retractors is maximal at a lantern position which is significantly lower (i.e. more protruded) in Paracentrotus than in Stylocidaris. Total forces generated by the retractors were in both species maximal at or above the lantern `resting positions'. In Paracentrotus alone, the total force-displacement curves tended to be bimodal. It is hypothesized that the retractors of Paracentrotus contain two populations of muscle fibres, one adapted for jaw opening and one for lantern retraction. No significant differences in the properties of the protractors of the two species could be identified. The lantern of Paracentrotus is more mobile than that of Stylocidaris and is able to exploit a wider range of food sources. This investigation has shown that the force-length relations of the lantern muscles match their differing working conditions. Accepted: 3 November 1997  相似文献   

17.
Advanced finite element models of the thorax have been developed to study, for example, the effects of car crashes. While there is a need for material properties to parameterize such models, specific properties are largely missing. Non-destructive techniques applicable in vivo would, therefore, be of interest to support further development of thorax models. The only non-destructive technique available today to derive rib bone properties would be based on quantitative computed tomography that measures bone mineral density. However, this approach is limited by the radiation dose. Bidirectional ultrasound axial transmission was developed on long bones ex vivo and used to assess in vivo health status of the radius. However, it is currently unknown if the ribs are good candidates for such a measurement. Therefore, the goal of this study is to evaluate the relationship between ex vivo ultrasonic measurements (axial transmission) and the mechanical properties of human ribs to determine if the mechanical properties of the ribs can be quantified non-destructively. The results show statistically significant relationships between the ultrasonic measurements and mechanical properties of the ribs. These results are promising with respect to a non-destructive and non-ionizing assessment of rib mechanical properties.  相似文献   

18.
The purpose of the study was to investigate changes in passive mechanical properties of the soleus muscle of the rat during the first year of life. These mechanical changes were quantified at a macroscopic (whole muscle) and a microscopic level (fiber) and were correlated with biochemical and morphological properties. Three passive mechanical tests (a relaxation test, a ramp stretch test and a stretch release cycle test) with different amplitudes and velocities were performed on isolated soleus muscles and fibers in rats at ages 1 (R1), 4 (R4) and 12 (R12) months. Mechanical parameters (dynamic and static forces, stresses and normalized stiffness) were recorded and measured. The morphological properties (size of fibers and muscles) for the three groups of rats were assessed by light microscopy which allowed us to observe the evolution of the fiber type (I, IIc and IIa) in the belly region and along the longitudinal axis of the muscle. In addition, biochemical analyses were performed at the level of the whole muscle in order to determine the collagen content. The results of the passive mechanical properties between the macroscopic (muscle) and microscopic (fiber) levels showed a similar evolution. Thus, an increase of the dynamic and static forces appeared between 1 and 4 months while a decrease of the passive tension occurred between 4 and 12 months. These mechanical changes were correlated to the morphological properties. In addition, the size of the three fibers type which grew with age could explain the increase of forces between 1 and 4 months. Furthermore, the biochemical analysis showed an increase of the collagen content during the same period which could also be associated with the increase of the passive forces. After 4 months, the passive tension decreased while the size of the fiber continued to increase. The biochemical analysis showed a decrease of the collagen content after 4 months, which could explain the loss of passive tension in the whole muscle. Concerning the similar loss at the fiber level, other assumptions are required such as a myofibril loss process and an increase of intermyofibrillar spaces. The originality of this present study was to compare the passive mechanical properties between two different levels of anatomical organization within the soleus muscle of the rat and to explain these mechanical changes in terms of biochemical and morphological properties.  相似文献   

19.
The purpose of the present study was to determine the in vivo passive mechanical properties, including the length below the slack length, of the gastrocnemius muscle (GAS) belly in humans. Transverse ultrasound images of the medial head of the GAS were taken in 11 subjects during passive knee extension from 80 degrees to 5 degrees with a constant ankle joint angle of 10 degrees (0 degrees is the neutral ankle position: positive values for dorsiflexion). The change in passive ankle joint moment (Mp), which is produced only by the GAS length change, was also measured during passive knee extension. The onset of Mp during passive knee extension was found to be 43+/-8 degrees (mean+/-SD) when the baseline of the Mp was set at the average Mp in the range of 55-60 degrees where the Mp was almost constant (SD<0.03 Nm). At this onset, the muscle fascicle length of the GAS (Lf) was 46+/-7 mm (slack length; Lfs). Lf at 80 degrees was 6+/-4 mm (13+/-6%) less than the Lfs, and Lf at 5 degrees was 12+/-5 mm (27+/-11%) greater than the Lfs. The passive force-resisting compression of the GAS did not produce a dorsiflexion moment in the joint angle range adopted. The passive ankle joint moment increased linearly with Lf (coefficient of determination (R2)=0.85-0.96), and the slopes of the relationships between Lf and Mp, and between the relative Lf to Lfs and Mp were 0.093+/-0.038 Nm/mm and 0.043+/-0.021 Nm/%Lfs. The findings of the present study can be implemented in musculoskeletal modeling, which would provide a more accurate evaluation of the passive mechanical properties of muscle during movement.  相似文献   

20.
Texture properties of high and low acyl mixed gellan gels   总被引:1,自引:0,他引:1  
The strength, deformability, and firmness of high acyl (H) and low acyl (L) mixed gellan gels were studied by compression tests. The gels were prepared with total polymer concentrations of 0.5, 1.0, and 1.5% at H/L weight ratios of 25/75, 50/50, 75/25, and calcium concentrations 2–80 mM. The mixed gels were much more deformable, with failure normal strains ranging from 0.6 to 1.5, but had similar strength compared to low acyl gellan gels. Both H/L ratio and total polymer concentration affected the textural properties, but H/L ratio was a more important factor. Maximum synergistic interaction was observed at H/L=50/50. The mixed gels exhibited excellent texture properties compared to other common food gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号