首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on our previous research, three series of new triazolylthioacetamides possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities and inhibition of tubulin polymerization. The most promising compounds 8b and 8j demonstrated more significant antiproliferative activities against MCF-7, HeLa, and HT-29 cell lines than our lead compound 6. Moreover, analogues 8f, 8j, and 8o manifested more potent antiproliferative activities against HeLa cell line with IC50 values of 0.04, 0.05 and 0.16?μM, respectively, representing 100-, 82-, and 25-fold improvements of the activity compared to compound 6. Furthermore, the representative compound, 8j, was found to induce significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. Meanwhile, compound 8b exhibited the most potent tubulin polymerization inhibitory activity with an IC50 value of 5.9?μM, which was almost as active as that of CA-4 (IC50?=?4.2?μM). Additionally, molecular docking analysis suggested that 8b formed stable interactions in the colchicine-binding site of tubulin.  相似文献   

2.
A new series of biphenyl methylene indolinones has been designed, synthesized and evaluated for their in vitro antiproliferative activity against various cancer cell lines like DU-145 (prostate cancer cell line), 4T1 (mouse breast cancer cell line), MDA-MB-231 (human breast cancer cell line), BT-549 (human breast cancer cell line), T24 (human urinary bladder carcinoma cell line), and HeLa (cervical cancer cell line). Among the series, compound 10e showed potent in vitro cytotoxic activity against HeLa and DU-145 cancer cell lines with IC50 value of 1.74 ± 0.69 µM and 1.68 ± 1.06 µM respectively. To understand the underlying mechanism of most potent cytotoxic compound 10e, various mechanistic studies were carried out on DU-145 cell lines. Cell cycle analysis results revealed that these conjugates affect both G0/G1 and G2/M phase of the cycle, tubulin binding assay resulted that compound 10e interrupting microtubule network formation by inhibiting tubulin polymerization with IC50 value of 4.96 ± 0.05 μM. Moreover, molecular docking of 10e on colchicine binding site of the tubulin explains the interaction of 10e with tubulin. Clonogenic assay indicated inhibition of colony formation by compound 10e in a dose dependent manner. In addition, morphological changes were clearly observed by AO/EB and DAPI staining studies. Moreover, ROS detection using DCFDA, JC-1, and annexin V-FITC assays demonstrated the significant apoptosis induction by 10e.  相似文献   

3.
A series of oxime ester-derivatives were prepared by utilizing the schizandrin (1), a major compound isolated from Schisandra grandiflora, which is deployed in different traditional system of medicine. The in vitro antiproliferative activities of the synthesized compounds were assessed against a selected panel of human cancer cell lines (A549, RKO P3, DU145 and Hela) and normal cell (HEK293). Several of these derivatives were found more potent in comparison to parent compound, schizandrin (1). Particularly, 4a and 4b demonstrated potent activity against DU-145 and RKOP3 cell lines with IC50 values of 3.42 µM and 3.35 µM respectively. To characterize the molecular mechanisms involved in antitumoral activity, these two compounds, 4a and 4b were selected for further studies. Cell cycle analysis revealed that both the compounds were able to induce apoptosis and cell cycle arrest at G0/G1 phase. To know the extent of apoptosis in DU145 and RKOP3 cell lines, Annexin V-FITC were performed. Moreover, the tubulin polymerization assay indicated that 4a and 4b exhibits potent inhibitory effect on the tubulin assembly. Molecular docking studies and competitive binding assay also indicated that 4a and 4b effectively bind at the colchicine binding site of the tubulin.  相似文献   

4.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

5.
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.  相似文献   

6.
A series of novel 4,7-dihydroxycoumarin based acryloylcyanohydrazone derivatives were synthesized and evaluated for antiproliferative activity against four different cancer cell lines (A549, HeLa, SKNSH, and MCF7). Most of the compounds displayed potent cytotoxicity with IC50 values ranging from 3.42 to 31.28 µM against all the tested cancer cell lines. The most active compound, 8h was evaluated for pharmacological mechanistic studies on cell cycle progression and tubulin polymerization inhibition assay. The results revealed that the compound 8h induced the cell cycle arrest at G2/M phase and inhibited tubulin polymerization with IC50 = 6.19 µM. Experimental data of the tubulin polymerization inhibition assay was validated by molecular docking technique and the results exhibited strong hydrogen bonding interactions with amino acids (ASN-101, TYR-224, ASN-228, LYS-254) of tubulin.  相似文献   

7.
Many natural and synthetic substances are known to interfere with the dynamic assembly of tubulin, preventing the formation of microtubules. In our search for potent and selective antitumor agents, a novel series of 1-(3′,4′,5′-trimethoxybenzoyl)-5-amino-1,2,4-triazoles were synthesized. The compounds had different heterocycles, including thiophene, furan or the three isomeric pyridines, and they possessed a phenyl ring bearing electron-releasing or electron-withdrawing substituents at the 3-position of the 5-amino-1,2,4-triazole system. Most of the twenty-two tested compounds showed moderate to potent antiproliferative activities against a panel of solid tumor and leukemic cell lines, with four (5j, 5k, 5o and 5p) showing strong antiproliferative activity (IC50 < 1 μM) against selected cancer cells. Among them, several molecules preferentially inhibited the proliferation of leukemic cell lines, showing IC50 values 2-100-fold lower for Jurkat and RS4;11 cells than those for the three lines derived from solid tumors (HeLa, HT-29 and MCF-7 cells). Compound 5k strongly inhibited tubulin assembly, with an IC50 value of 0.66 μM, half that obtained in simultaneous experiments with CA-4 (IC50 = 1.3 μM).  相似文献   

8.
A series of new 3,6-diphenylimidazo[2,1-b]thiazole derivatives (4al) are synthesized and evaluated for their anticancer activity. Some of the synthesized compounds have shown potent anti-proliferative activity against HeLa, MDA-MB-231, A549 and THP1 human cancer cell lines. Among the active compounds, 3-(3-trifluoromethylphenyl)-6-phenylimidazo[2,1-b]thiazole (4j) has caused significant cytotoxicity in HeLa cells, with IC50 as low as 6.5 μM. Compound 4j has induced caspase-3 and caspase-8 activation, leading to an apoptotic cell death. FACS analysis has revealed that compound 4j arrests cells in G0/G1 phase. The presence of 3-(3-trifluoromethylphenyl)- or 3-(3-chlorophenyl)-substituent, in that order, on the 6-phenylimidazo[2,1-b]thiazole impacts more positively than other aryl-substituents, on the anti-proliferative properties of these compounds.  相似文献   

9.
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a–al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.  相似文献   

10.
In this study, we synthesized a series of trans-indole-3-acrylamide derivatives (3ak) and investigated their activity for inhibition of cell proliferation against five human cancer cell lines (HeLa, MCF7, MDA-MB-231, Raji and HL-60) by MTT assay. Compound 3e showed significant antiproliferative activity against both the Raji and HL-60 cell lines with IC50 values of 9.5 and 5.1 μM, respectively. Compound 3e also exhibited moderate inhibitory activity on tubulin polymerization (IC50 = 17 μM). Flow cytometric analysis of cultured cells treated with 3e also demonstrated that the compound caused cell cycle arrest at the G2/M phase in HL-60 and HeLa cells. Moreover, 3e, the most active compound, caused an apoptotic cell death through the activation of caspase-3. Docking simulations suggested that 3e binds to the colchicine site of tubulin.  相似文献   

11.
A series of 2,4-disubstituted phthalazinones were synthesized and their biological activities, including antiproliferation, inhibition against Aurora kinases and cell cycle effects were evaluated. Among them, N-cyclohexyl-4-((4-(1-methyl-1H-pyrazol-4-yl)-1-oxophthalazin-2(1H)-yl) methyl) benzamide (12c) exhibited the most potent antiproliferation against five carcinoma cell lines (HeLa, A549, HepG2, LoVo and HCT116 cells) with IC50 values in range of 2.2–4.6?μM, while the IC50 value of reference compound VX-680 was 8.5–15.3?μM. Moreover, Aurora kinase assays exhibited that compound 12c was potent inhibitor of AurA and AurB kinase with the IC50 values were 118?±?8.1 and 80?±?4.2?nM, respectively. Molecular docking studies indicated that compound 12c forms better interaction with both AurA and AurB. Furthermore, compound 12c induced G2/M cell cycle arrest in HeLa cells by regulating protein levels of cyclinB1 and cdc2. These results suggested that 12c is a promising pan-Aurora kinase inhibitor for the potential treatment of cancer.  相似文献   

12.
A series of thirty-seven 1,3,5-triazine analogues have been synthesized, characterized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines such as HeLa, HepG2, A549 and MCF-7. Most of the 1,3,5-triazine analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, 8j showed potent activity against the cancer cell lines such as HeLa, HepG2, A549 and MCF-7 with IC50 12.3 ± 0.8, 9.6 ± 0.4, 10.5 ± 1.0 and 11.7 ± 0.5 μM respectively. 8j was taken up for elaborate biological studies and the cells in the cell cycle were arrested in G2/M phase. In addition, 8j was examined for its effect on the microtubule system with a tubulin polymerization assay, immunofluorescence. 8j showed remarkable inhibition of tubulin polymerization. Molecular docking studies were also carried out to understand the binding pattern. The studies suggested that 8j has a good binding affinity of ?7.949 towards nocodazole binding site of tubulin while nocodazole has ?7.462.  相似文献   

13.
A series of 6H-pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones have been synthesized and evaluated for their antiproliferative activities. Among them, compounds 2j and 4d displayed potent cytotoxic activities in vitro against HeLa cell line with IC50 values of 0.07 and 0.06 μM, respectively. In general, the antiproliferative activities are correlated with the inhibitory effect on tubulin polymerization and binding property of the colchicine binding site. In addition, flow cytometry and immunofluorescence analysis revealed selected compounds caused G2/M phase arrest of the cell cycle and disruption of the mitotic spindle assembly, which had correlation with proliferation inhibitory activity.  相似文献   

14.
A series of novel tetrazole analogues of resveratrol were synthesized and evaluated for their anti-leukemic activity against an extensive panel of human cancer cell lines and against the MV4-11 AML cell line. These molecules were designed as drug-like derivatives of the resveratrol analogue DMU-212 and its cyano derivatives. Four compounds 8g, 8h, 10a and 10b exhibited LD50 values of 4.60?µM, 0.02?µM, 1.46?µM, and 1.08?µM, respectively, against MV4-11 leukemia cells. The most potent compounds, 8h and 10b, were also found to be active against an extensive panel of human hematological and solid tumor cell lines; compound 8h was the most potent compound with GI50 values <10?nM against more than 90% of the human cancer cell lines in the 60-cell panel. Analogues 8g, 8h, 10a and 10b were also tested for their ability to inhibit the polymerization of tubulin, and compound 8h was found to be the most potent analogue. Molecular modeling studies demonstrated that 8h binds to the colchicine binding site on tubulin. Thus, compound 8h is considered to be a lead druglike molecule from this tetrazole series of compounds.  相似文献   

15.
A series of chalcones containing naphthalene moiety 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure–activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.  相似文献   

16.
A novel series of aminopyrimidinylisoindoline derivatives 1a-w having an aminopyrimidine scaffold as a hinge region binding motif were designed and synthesized. Among them, six compounds showed potent inhibitory activities against AXL kinase with IC50 values of submicromolar range. Especially, compound 1u possessing (4-acetylpiperazin-1-yl)phenyl moiety exhibited extremely excellent efficacy (IC50?=?<0.00050?μM). Their in vitro antiproliferative activities were tested over five cancer cell lines. Most compounds showed good antiproliferative activities against HeLa cell line. The kinase panel profiling of 50 different kinases and the selected inhibitory activities for the representative compound 1u were carried out. The compound 1u exhibited excellent inhibitory activities (IC50?=?<0.00050, 0.025, and 0.050?μM for AXL, MER, and TYRO3, respectively) against TAM family, together with potent antiproliferative activity against MV4-11 cell line (GI50?=?0.10?μM) related to acute myeloid leukemia (AML).  相似文献   

17.
Ten novel artemisinin derivatives containing fluorine atoms were synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies in this study. The in vitro cytotoxicity against U87MG, SH-SY5Y, MCF-7, MDA-MB-231, A549 and A375 cancer cell lines was evaluated by MTT assay. Compound 9j was the most potent anti-proliferative agent against the human breast cancer MCF-7 cells (IC50?=?2.1?μM). The mechanism of action of compound 9j was further investigated by analysis of cell apoptosis and cell cycle. Compound 9j induced cell apoptosis and arrested cell cycle at G1 phase in MCF-7 cells. Our promising findings indicated that the compound 9j could stand as potential lead compound for further investigation.  相似文献   

18.
We previously demonstrated that capsazepine (CPZ), a synthetic transient receptor potential Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-cancer effects in vivo. The purpose of this study was to develop more potent analogs based upon CPZ pharmacophore and structure–activity relationships (SAR) across analogs. We generated 30 novel compounds and screened for their anti-proliferative effects in cultured HeLa cervical cancer cells. Cell viability assays identified multiple compounds with IC50s?<?15?μM and one compound, 29 with an IC50?<?5?μM; six fold more potent than CPZ. We validated the anti-proliferative efficacy of two lead compounds, 17 and 29, in vivo using HeLa-derived xenografts in athymic nude mice. Both analogs significantly reduced tumor volumes by day 8 compared to control treated animals (p?<?0.001) with no observable adverse effects. Calcium imaging determined that compound 17 activates TRPV1 whereas 29 neither activates nor inhibits TRPV1; indicating a unique mechanism-of-action that does not involve TRPV1 signaling. Cell viability assays using a panel of additional tumor types including oral squamous cell carcinoma, non-small cell lung cancer (NSCLC), breast cancer, and prostate cancer cell lines (HSC-3, H460, MDA-231, and PC-3 respectively) demonstrated that both lead compounds were efficacious against every cancer type tested. Compounds 29 displayed IC50s of 1–2.5?μM in HSC-3and PC-3cells. Thus, we propose that these novel CPZ analogs may serve as efficacious therapeutic agents against multiple tumor types that warrant further development for clinical application.  相似文献   

19.
A series of spirochromenocarbazole tethered 1,2,3-triazoles were synthesized via click chemistry based one-pot, five component reaction between N-propargyl isatins, malononitrile, 4-hydroxycarbazole, aralkyl halides and sodium azide using cellulose supported CuI nanoparticles (Cell-CuI NPs) as the heterogeneous catalyst. Antiproliferative activity of all the synthesized compounds was investigated against panel of cancer cell lines such as MCF-7, MDA-MB-231, HeLa, PANC-1, A-549, and THP-1. Many of the synthesized compounds exhibited good anti-proliferative activity against breast (MCF-7 and MDA-MB-231) and cervical (HeLa) cancer cells with IC50 values less than 10 μM. In case of MCF-7 cells, among the nine compounds that showed good anti-proliferative activity, compounds 6f and 6j were found to be highly potent (IC50 = 2.13 μM and 4.80 μM, respectively). In case of MDA-MB-231, three compounds (6k, 6j and 6s) showed antiproliferative activity amongst which 6k was the most potent one (IC50 = 3.78 μM). On the other hand, in cervical cancer HeLa cells, compounds 6b, 6g, 6s and 6u showed excellent antiproliferative activity (IC50 = 4.05, 3.54, 3.83, 3.35 μM, respectively). All the compounds were found to be nontoxic to the human umbilical vein endothelial cells (HUVECs). AO and EtBr staining and fluorescence microscopy studies of the active compounds (IC50 < 5 μM) suggested that these compounds induce cell death by apoptosis.  相似文献   

20.
A new series of pyrano chalcone derivatives containing indole moiety (342, 49a49r) were synthesized and evaluated for their antiproliferative activities. Among all the compounds, compound 49b with a propionyloxy group at the 4-position of the left phenyl ring and N-methyl-5-indoly on the right ring displayed the most potent cytotoxic activity against all tested cancer cell lines including multidrug resistant phenotype, which inhibits cancer cell growth with IC50 values ranging from 0.22 to 1.80 μM. Furthermore, 49b significantly induced cell cycle arrest in G2/M phase and inhibited the polymerization of tubulin. Molecular docking analysis demonstrated the interaction of 49b at the colchicine binding site of tubulin. In experiments in vivo, 49b exerted potent anticancer activity in HepG2 human liver carcinoma in BALB/c nude mice. These results indicated these compounds are promising inhibitors of tubulin polymerization for the potential treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号