首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forefoot strike is increasingly being adopted by runners because it can better attenuate impact than rearfoot strike. However, forefoot strike may overload the plantar fascia and alter the plantar fascia elasticity. This study aimed to use ultrasound elastography to investigate and compare shear wave elasticity of the plantar fascia between rearfoot strikers and forefoot strikers. A total of 35 participants (21 rearfoot strikers and 14 forefoot strikers), who were free of lower limb injuries and diseases, were recruited from a local running club. Individual foot strike patterns were identified through the measured plantar pressure during treadmill running. The B-Mode ultrasound images and shear wave elastographic images of the plantar fascia were collected from each runner. Two independent investigators reviewed the images and examined the plantar fascia qualitatively and quantitatively. The results demonstrated an overall good agreement between the investigators in the image review outcomes (ICC:0.96–0.98, κ: 0.89). There were no significant differences in the fascial thickness (p = 0.50) and hypoechogenicity on the gray-scale images (p = 0.54) between the two groups. Shear wave elastography showed that forefoot strikers exhibited reduced plantar fascia elasticity compared to rearfoot strikers (p = 0.01, Cohen’s d = 0.91). A less elastic fascial tissue was more easily strained under loading. Tissue overstrain is frequently related to the incidence of plantar fasciitis. While further study is needed for firm conclusions, runners using forefoot strike were encouraged to enhance their foot strength for better protection of the plantar fascia.  相似文献   

2.
Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern.  相似文献   

3.
Plantar fascia (PF) is a heterogeneous thickness structure across plantar foot. It is important significance to investigate the biomechanical behavior of the medial, middle and lateral PF regions. To investigate the non-uniform macro/micro structures of the different PF regions, the uniaxial tensile test of PF strips were performed to assess the mechanical behavior of PF. A scanning electron microscope (SEM) was used to visualize and measure the micro morphology of PF associated with collagen fibers. A three-dimensional foot finite element (FE) model was developed to quantify the tensile behavior of the internal PF. The elastic modulus of the lateral PF component (1560 MPa) was observed, followed by the medial (701 MPa), the central (1100 MPa) and the lateral (714 MPa) portions in the central component. Elongation of the central portion (0.192) was lower than the medial (0.223) and the lateral (0.227) portions. The corresponding SEM images showed that the fibers of the central portion were more densely packed and thicker compared to the ambilateral portions in the central component. While the FE model prediction also suggested that the greater elastic modulus of the central PF portion had lower strain (0.192) versus the ambilateral portions. Therefore, the lower elongation and greater elastic modulus at the central portion of PF would probably have a high risk of PF injury. The findings showed a relation between the mechanical tension and fibrous morphology of PF. This information would have a better understanding of the PF pathophysiology diseases related to tear and injury of PF.  相似文献   

4.
As joint coupling variability has been associated with running-related lower extremity injury, the purpose of this study was to identify how variability within the foot may be different between forefoot (FFS) and rearfoot strike (RFS) runners. Identifying typical variability in uninjured runners may contribute to understanding of ideal coordination associated with running foot strike patterns.Fifteen FFS and 15 RFS runners performed a maximal-effort 5 km treadmill run. A 7-segment foot model identified 6 functional articulations (rearfoot, medial and lateral midfoot and forefoot, and 1st metatarsophalangeal) for analysis. Beginning and end of the run motion capture data were analyzed. Vector coding was used to calculate 6 joint couples. Standard deviations of the coupling angles were used to identify variability within subphases of stance (loading, mid-stance, terminal, and pre-swing). Mixed between-within subjects ANOVAs compared differences between the foot strikes, pre and post run.Increased variability was identified within medial foot coupling for FFS and within lateral foot coupling for RFS during loading and mid-stance. The exhaustive run increased variability during mid-stance for both groups.Interpretation. Joint coupling variability profiles for FFS and RFS runners suggest different foot regions have varying coordination needs which should be considered when comparing the strike patterns.  相似文献   

5.
Finite element (FE) models driven by medical image data can be used to estimate subject-specific spinal biomechanics. This study aimed to combine magnetic resonance (MR) imaging and quantitative fluoroscopy (QF) in subject-specific FE models of upright standing, flexion and extension. Supine MR images of the lumbar spine were acquired from healthy participants using a 0.5 T MR scanner. Nine 3D quasi-static linear FE models of L3 to L5 were created with an elastic nucleus and orthotropic annulus. QF data was acquired from the same participants who performed trunk flexion to 60° and trunk extension to 20°. The displacements and rotations of the vertebrae were calculated and applied to the FE model. Stresses were averaged across the nucleus region and transformed to the disc co-ordinate system (S1 = mediolateral, S2 = anteroposterior, S3 = axial). In upright standing S3 was predicted to be −0.7 ± 0.6 MPa (L3L4) and −0.6 ± 0.5 MPa (L4L5). S3 increased to −2.0 ± 1.3 MPa (L3L4) and −1.2 ± 0.6 MPa (L4L5) in full flexion and to −1.1 ± 0.8 MPa (L3L4) and −0.7 ± 0.5 MPa (L4L5) in full extension. S1 and S2 followed similar patterns; shear was small apart from S23. Disc stresses correlated to disc orientation and wedging. The results demonstrate that MR and QF data can be combined in a participant-specific FE model to investigate spinal biomechanics in vivo and that predicted stresses are within ranges reported in the literature.  相似文献   

6.
Improvised explosive devices (IEDs) were used extensively to target occupants of military vehicles during the conflicts in Iraq and Afghanistan (2003–2011). War fighters exposed to an IED attack were highly susceptible to lower limb injuries. To appropriately assess vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD), called the Warrior Injury Assessment Manikin (WIAMan), was designed for vertical loading. The main objective of this study was to develop and validate a Finite Element (FE) model of the WIAMan lower limb (WIAMan-LL). Appropriate materials and contacts were applied to realistically model the physical dummy. Validation of the model was conducted based on experiments performed on two different test rigs designed to simulate the vertical loading experienced during an under-vehicle explosion. Additionally, a preliminary evaluation of the WIAMan and Hybrid-III test devices was performed by comparing force responses to post-mortem human surrogate (PMHS) corridors. The knee axial force recorded by the WIAMan-LL when struck on the plantar surface of the foot (2 m/s) fell mostly within the PMHS corridor, but the corresponding data predicted by the Hybrid-III was almost 60% higher. Overall, good agreements were observed between the WIAMan-LL FE predictions and experiments at various pre-impact speeds ranging from 2 m/s up to 5.8 m/s. Results of the FE model were backed by mean objective rating scores of 0.67–0.76 which support its accuracy relative to the physical lower limb dummy. The observations and objective rating scores show the model is validated within the experimental loading conditions. These results indicate the model can be used in numerical studies related to possible dummy design improvements once additional PMHS data is available. The numerical lower limb is currently incorporated into a whole body model that will be used to evaluate the vehicle design for underbody blast protection.  相似文献   

7.
8.
Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.  相似文献   

9.
Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional–integral–derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip–ankle anterior–posterior (A–P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial–lateral load distribution or varus-valgus torque, internal–external torque, A–P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.  相似文献   

10.
The analysis of the mechanics of the contact interactions of fingers/handle and the stress/strain distributions in the soft tissues in the fingertip is essential to optimize design of tools to reduce many occupation-related hand disorders. In the present study, a three-dimensional (3D) finite element (FE) model for the fingertip is proposed to simulate the nonlinear and time-dependent responses of a fingertip to static and dynamic loadings. The proposed FE model incorporates the essential anatomical structures of a finger: skin layers (outer and inner skins), subcutaneous tissue, bone and nail. The soft tissues (inner skin and subcutaneous tissue) are considered to be nonlinearly viscoelastic, while the hard tissues (outer skin, bone and nail) are considered to be linearly elastic. The proposed model has been used to simulate two loading scenarios: (a) the contact interactions between the fingertip and a flat surface and (b) the indentation of the fingerpad via a sharp wedge. For case (a), the predicted force/displacement relationships and time-dependent force responses are compared with the published experimental data; for case (b), the skin surface deflection profiles were predicted and compared with the published experimental observations. Furthermore, for both cases, the time-dependent stress/strain distributions within the tissues of the fingertip were calculated. The good agreement between the model predictions and the experimental observations indicates that the present model is capable of predicting realistic time-dependent force/displacement responses and stress/strain distributions in the soft tissues for dynamic loading conditions.  相似文献   

11.
Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11–26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7–10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.  相似文献   

12.
In an effort to better understand the mechanics of ship-whale collision and to reduce the associated mortality of the critically endangered North Atlantic right whale, a comprehensive biomechanical study has been conducted by the Woods Hole Oceanographic Institution and the University of New Hampshire. The goal of the study is to develop a numerical modeling tool to predict the forces and stresses during impact and thereby the resulting mortality risk to whales from ship strikes.Based on post-mortem examinations, jaw fracture was chosen as a fatal endpoint for the whales hit by a vessel. In this paper we investigate the overall mechanical behavior of a right whale mandible under transverse loading and develop a finite element analysis model of the bone. The equivalent elastic modulus of the cortical component of right whale mandible is found by comparing full-scale bending tests with the results of numerical modeling. The finite element model of the mandible can be used in conjunction with a vessel-whale collision event model to predict bone fracture for various ship strike scenarios.  相似文献   

13.
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments.  相似文献   

14.
The purpose of this study is to measure the failure risk of a crown depending on the cusp angle. Three all-ceramic crown models consisting of CH (high incline), CM (middle incline), and CL (low incline) are designed. Stress is applied to the crown with Loading case-1 (top of cusp tip) and Loading case-2 (middle of cusp ridge) with the use of FEA software. In Loading case-1 and case-2, the CH showed the highest Maximum Principal Stress (MPS) while the CL showed the lowest MPS. The cusp angle is an influential factor affecting stress distribution in dental crowns.  相似文献   

15.
Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP.  相似文献   

16.
It has been repeatedly suggested that mammalian cranial sutures act not only to allow growth but also to reduce the levels of strain experienced by the skull during feeding. However, because of the added complexity they introduce, sutures are rarely included in finite element (FE) models, despite their potential to influence strain results. Because sutures present different morphologies and with differing degrees of internal fusion, many different methods of modeling may be necessary to accurately measure strain environments. Alternatively, these variables may exert very little influence on the scale of a whole‐skull model. To validate suture modeling methods, four alternative ways of including a suture in 3D FE models of the pig zygomatic arch were considered and compared with ex vivo experimental data from digital speckle pattern interferometry (DSPI). The use of DSPI rather than traditional strain gauge techniques allows strain gradients around the suture as well as the motions of the two bones to be observed. Results show that the introduction of 3D elements assigned more compliant material properties than the surrounding bone, is the most effective way of modeling both morphologies of suture, both in tension and compression. However, models containing no suture are almost indistinguishable from these compliant suture models, beyond the high strain gradient immediately adjacent to the suture. Conversely, modeling the suture as an open break in the mesh, or with spring elements assigned suture properties, fails to reproduce the experiment. Thus, although a solid but flexible model of sutures is preferred, the similarity between these models and those without sutures tentatively suggests that such extra detail may be unnecessary in pigs if the behavior of the whole skull is of interest. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
18.
Previous in-vivo studies suggest that the ratio of total lumbar rotation over pelvic rotation (lumbo-pelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Similarly, there is also evidence that the lumbo-pelvic rhythm is key for evaluation of realistic muscle and joint reaction forces and moments predicted by various computational musculoskeletal models. This study investigated the effects of three lumbo-pelvic rhythms defined based on in-vivo measurements on the spinal response during moderate forward flexion (60°) using a combined approach of musculoskeletal modeling of the upper body and finite element model of the lumbosacral spine. The muscle forces and joint loads predicted by the musculoskeletal model, together with the gravitational forces, were applied to the finite element model to compute the disc force and moment, intradiscal pressure, annular fibers strain, and load-sharing. The results revealed that a rhythm with high pelvic rotation and low lumbar flexion involves more global muscles and increases the role of the disc in resisting spinal loads, while its counterpart, with low pelvic rotation, recruits more local muscles and engages the ligaments to lower the disc loads. On the other hand, a normal rhythm that has balanced pelvic and lumbar rotations yields almost equal disc and ligament load-sharing and results in more balanced synergy between global and local muscles. The lumbo-pelvic rhythm has less effect on the intradiscal pressure and annular fibers strain. This work demonstrated that the spinal response during forward flexion is highly dependent on the lumbo-pelvic rhythm. It is therefore, essential to adapt this parameter instead of using the default values in musculoskeletal models for accurate prediction of muscle forces and joint reaction forces and moments. The findings provided by this work are expected to improve knowledge of spinal response during forward flexion, and are clinically relevant towards low back pain treatment and disc injury prevention.  相似文献   

19.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.  相似文献   

20.
Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号