首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new dehydroacetic acid chalcone-1,2,3-triazole hybrids as potential antimicrobial agents was designed, synthesized and characterized by FTIR, NMR and HRMS spectral techniques. All the synthesized compounds were screened in vitro against four bacterial strains (Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The antimicrobial results indicated that some of the compounds showed remarkable activities comparable to the standard drugs. Most of the compounds exhibited better efficacy compared to the DHA, which is itself an antimicrobial agent. The synergistic effect in biological activity was observed when DHA, chalcone and 1,2,3-triazole are conjugated. The molecular modeling studies of compound 5j into E. coli topoisomerase II DNA gyrase B were also performed.  相似文献   

2.
In an effort to develop novel antimicrobial agents against drug-resistant bacterial infections, 5,6-dihydroimidazo[2,1-b]thiazole compounds were synthesized and tested for their antimicrobial activity. Eight compounds comprised by two sub-scaffolds were identified as hits against methicillin-resistant Staphylococcus aureus (MRSA). These hits were modified at 6-position by replacing (S)-6 to (R)-6 configuration and the (R)-isomers increased their antimicrobial activities by two-fold. The most active compound showed a MIC90 value of 3.7 μg/mL against MRSA in a standard microdilution bacterial growth inhibitory assay. This compound protected wax moth worms against MRSA at a dose of 5× MIC using a worm infectious model. This compound also exhibited inhibition of DNA gyrase activity in a DNA gyrase supercoil assay, suggesting the 5,6-dihydroimidazo[2,1-b]thiazoles may target DNA gyrase for the antimicrobial action.  相似文献   

3.
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.  相似文献   

4.
This study presents a synthesis of new series of some benzimidazole, bisbenzimidazole and perimidine derivatives via microwave technique, which, leads to the good product yields and short reaction times. The structure of newly synthesized compounds was confirmed by 1H NMR and 13C NMR spectra. These compounds were screened for their lipase inhibition activity. Then, all compounds were evaluated with regard to pancreatic lipase activity, and some of the 2-substituted perimidines, bisperimidine and bisbenzimidazole derivatives showed lipase inhibition at various concentrations.  相似文献   

5.
A series of novel regioisomeric hybrids of quinazoline/benzimidazole viz. (3-allyl-2-methyl-3H-benzimidazol-5-yl)-(2-substituted-quinazolin-4-yl)-amine and (1-allyl-2-methyl-1H-benzimidazol-5-yl)-(2-substituted-quinazolin-4-yl)-amine of biological interest were synthesized. All the synthesized compounds were well characterized by 1H and 13C NMR as well as mass spectroscopy. The newly synthesized compounds were screened for in vitro antitumor activities against 60 tumor cell lines panel assay. A significant inhibition for cancer cells were observed with compound 9 and also more active against known drug 5-fluorouracil (5-FU) in some tumor cell lines. Compound 9 displayed appreciable anticancer activity against leukemia, colon, melanoma, renal and breast cancer cell lines.  相似文献   

6.
In this study, novel 3-O-methoxy-4-halo, disubstituted-5,7-dimethoxy chromans with bacterial cell wall degrading potentials were synthesized, characterized and evaluated as DNA gyrase inhibitors and antibacterial agents. Compounds were showed a broad spectrum of antimicrobial activity against both Gram+ve bacteria (S. aureus (MTCC 3160), C. diphtheriae (MTCC 116), S. pyogenes (MTCC 442)) and Gram?ve bacteria (E. coli (MTCC 443), P. aeruginosa (MTCC 424), K. pneumoniae (MTCC 530)). Further, a molecular docking study was carried out to get more insight into the binding mode of present study compounds to target proteins (PDB ID: 2XCT (S. aureus DNA gyrase A), PDB ID: 3G75 (S. aureus DNA gyrase B), PDB ID: 3L7L (Teichoic acid polymerase). In the results, 14?>?20?>?24?>?12?>?18?>?17 were found as the most active against almost all executed activities in this study. The predicted Lipinski’s filter scores, SAR, pharmacokinetic/pharmacodynamics, and ADMET properties of these compounds envisioned the druggability prospects and the necessity of further animal model evaluations of 3-O-methoxy-4-halo disubstituted 5,7-dimethoxy chromans to establish them as an effective and future antibiotics.  相似文献   

7.
To address the growing problem of antibiotic resistance, a set of 12 hybrid compounds that covalently link fluoroquinolone (ciprofloxacin) and aminoglycoside (kanamycin A) antibiotics were synthesized, and their activity was determined against both Gram-negative and Gram-positive bacteria, including resistant strains. The hybrids were antagonistic relative to the ciprofloxacin, but were substantially more potent than the parent kanamycin against Gram-negative bacteria, and overcame most dominant resistance mechanisms to aminoglycosides. Selected hybrids were 42–640 fold poorer inhibitors of bacterial protein synthesis than the parent kanamycin, while they displayed similar inhibitory activity to that of ciprofloxacin against DNA gyrase and topoisomerase IV enzymes. The hybrids showed significant delay of resistance development in both E. coli and B. subtilis in comparison to that of component drugs alone or their 1:1 mixture. More generally, the data suggest that an antagonistic combination of aminoglycoside-fluoroquinolone hybrids can lead to new compounds that slowdown/prevent the emergence of resistance.  相似文献   

8.
9.
Herein, we reported the synthesis of 16 novel steroidal thiosemicarbazone derivatives via the condensation of steroidal ketones and substituted thiosemicarbazides under solvent-free conditions using microwave irradiation. The yields obtained are in the range of 84–96% using microwave method and 46–62% using conventional method. All the synthesized compounds (7ap) have been characterized by 1H NMR, ESI-MS, IR and elemental analyses. All the series compounds (7a–p) were evaluated for their antibacterial activity against and the results were compared with the standard drug Amoxicillin. Some of the compounds from the series like 7c, 7o and 7p were equipotent with Amoxicillin against Pseudomonas aeruginosa. Also compound 7h was better than Amoxicillin against Staphylococcus aureus and Bacillus subtilis.  相似文献   

10.
A series of piperazinyl-1,2-dihydroquinoline carboxylates were synthesized by the reaction of ethyl 4-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxylates with various piperazines and their structures were confirmed by 1H NMR, 13C NMR, IR and mass spectral analysis. All the synthesized compounds were screened for their in vitro antimicrobial activities. Further, the in silico molecular docking studies of the active compounds was performed to explore the binding interactions between piperazinyl-1,2-dihydroquinoline carboxylate derivatives and the active site of the Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCQ). The docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9b and 10c were identified as promising antimicrobial lead molecules. This study might provide insights to identify new drug candidates that target the S. aureus virulence factor, dehydrosqualene synthase.  相似文献   

11.
We designed and synthesized new series of diverse triazoles, isoxazoles, isoxazolines, and aziridines linked 4-methylumbelliferone 1 using intermolecular 1,3-dipolar cycloaddition reactions. Structures of these compounds were established on the basis of 1H NMR, 13C NMR, and ESI-HRMS. All prepared compounds were evaluated for their antimicrobial, anticoagulant, and anticholinesterase activities. Interestingly, among the tested molecules, some of the analogs displayed better activities than the parent 4-methylumbelliferone 1 such as 6a and 6d for their antifungal properties. Moreover, compounds 4, 5, 6, and 7 showed the importance of the added fragments to 4-methylumbelliferone 1 via the linker methylene to have good activity.  相似文献   

12.
Twenty-one novel alkyl/acyl/sulfonyl substituted fluoroquinolone derivatives were designed, synthesized and evaluated for their anti-tuberculosis and antibacterial activity. The targeted compounds were synthesized by the introduction of alkyl, acyl or sulfonyl moieties to the basic secondary amine moiety of moxifloxacin. Structures of the compounds were enlightened by FT-IR, 1H NMR, 13C NMR and HRMS data besides elemental analysis. Compounds were initially tested in vitro for their anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv using microplate alamar blue assay. Minimal inhibitory concentration (MIC) values of all compounds were found between > 25.00–0.39 µg/mL while compounds 1, 2 and 13 revealed an outstanding activity against M. tuberculosis H37Rv with MIC values of 0.39 µg/mL. Activities of compounds 121 against to a number of Gram-positive and Gram-negative bacteria and fast growing mycobacterium strain were also investigated by agar well diffusion and microdilution methods. According to antimicrobial activity results, compound 13 was found the most potent derivative with a IC50 value of <1.23 μg/mL against Staphylococcus aureus and clinical strain of methicillin-resistant clinical strain of S. aureus.  相似文献   

13.
In this study, several sulfonamide derivatives, 4-(2-methylacetylamino)benzenesulfonamides were synthesized. Chemical structures of the derivatives were characterized by 1H NMR, 13C NMR, LC–MS–MS, UV–Vis, FTIR, photoluminescence and elemental analysis. Sulfanilamide was reacted with 2-bromopropionyl bromide, in the presence of pyridine, to form bromo-substituted sulfonamide key intermediates, which were subsequently treated with secondary amines to obtain novel sulfonamide derivatives. All the synthesized compounds were evaluated for in vitro antimicrobial activities and cytotoxicity. Increases in ring size, and rings bearing a nitrogen heteroatom led to improvements in antimicrobial activities. As the presence of CA IX and CA XII enzymes have been implicated in some cancerous tumors, the studies presented herein focuses on targeting these enzymes. It was found that the synthesized derivatives had in vitro anti-cancer properties, where compounds (36) were found to be active against all cancerous cells, and no cytotoxic effects on normal cells were observed.  相似文献   

14.
A series of novel piperazine based cinnamic acid bearing coumarin derivatives were designed and synthesized by piperazine based cinnamic acids esterification with 4-hydroxycoumarin and characterized by various spectral techniques like infrared, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass. The novel bioactive compounds (7a-7m) screen their potential against different bacterial and fungal strains. Compound 7g (minimum inhibitory concentration [MIC] = 12.5 µg/ml) exhibited potent antibacterial activity against Escherichia coli strain. Compounds 7d, 7f, 7g, 7k, 7l , and 7m showed potent antibacterial activity against all bacterial strains. Compounds 7a, 7g, 7h, 7k, 7l , and 7m exhibited potent antifungal activity against all fungal strains. Furthermore, a molecular docking study revealed that compounds 7d, 7f, 7g , and 7k could bind to the active site of E. coli DNA gyrase subunit B protein and form hydrogen bonding with crucial amino acid residues Arg136 in the active sites. Comprehensively, our study recommends that 7d, 7f, 7g , and 7k could be a promising lead for developing more efficient antimicrobial drug candidates and DNA gyrase inhibitors.  相似文献   

15.
Antimicrobial resistance which is increasing at an alarming rate is a severe public health issue worldwide. Hence, the development of novel antibiotics is an urgent need as microbes have developed resistance against available antibiotics. In search of novel antimicrobial agents, a convenient route for the preparation of substituted 3-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-1-(2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)prop-2-en-1-ones ( 6a – 6o ) has been adopted by using pyridine-3-carbohydrazide and various aromatic aldehydes. The newly synthesized compounds were characterized by using various spectral techniques, for example, IR, 1H NMR, 13C NMR, and mass spectroscopy. Synthesized hybrids were studied for in vitro antimicrobial potency against various bacterial and fungal strains. Antibacterial results revealed that compounds 6e, 6h, 6i, 6l , and 6m were found to be most active against bacterial strains as they showed minimum inhibitory concentration (MIC) value of 62.5 μg/mL while compounds 6d, 6e , and 6h showed MIC value of 200 μg/mL against Candida albicans. The quantum parameters that relate to the bioavailability of the compounds were computed, followed by docking with different bacterial and fungal targets like sortase A, dihydrofolate reductase, thymidylate kinase, gyrase B, sterol 14-alpha demethylase. The experimental and computational results are in good agreement.  相似文献   

16.
A series of new urea derivatives (3a-p) have been synthesized from readily available isocyanates and amines in good to high yields. All synthesized compounds were fully characterized using 1H NMR, 13C NMR, IR, and mass spectrometry. Additionally, the structure of the compound (3n) was confirmed by single-crystal X-ray diffraction. Furthermore, all compounds were evaluated for antimicrobial activity against five bacteria and two fungi. Last but not the least, molecular docking studies with Candida albicans dihydropteroate synthetase were performed and the results are presented herein.  相似文献   

17.
A series of new sulfonamides have been synthesized from Ampyrone with different benzene sulfonyl chlorides to yield the N-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) benzenesulfonamides (4ae). All synthesized compounds were characterized on the basis of FTIR, 1H NMR, and 13C NMR, and also by the aid of mass spectral data. Further, all synthesized compounds have studied for their in vitro antimicrobial activities against selected bacterial as well as fungal strains by the agar well diffusion method. Free radical scavenging activity has been investigated by using DPPH method. Among all the synthesized compounds, 4b, 4d, and 4e exhibited significant antimicrobial and antioxidant activities.  相似文献   

18.
A novel series of indole based benzofuran derivatives has been synthesized under microwave irradiation and conventional conditions. The structures of the compounds were established on the basis of 1HNMR, 13C NMR, IR and mass spectral data. The analogues were evaluated for their in vitro antimicrobial activity against two gram-positive bacteria, two gram-negative bacteria and two fungal strains. The same series was screened for in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Most of the title compounds exhibited promising antimicrobial and antioxidant activities.  相似文献   

19.
Owing to the growing need for novel antibacterial agents, we synthesized a novel series of fluoroquinolones including 7-substituted-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid derivatives, which were tested against clinically relevant Gram positive and Gram negative bacteria. Chemical structures of the synthesized compounds were identified using spectroscopic methods. In vitro antimicrobial effects of the compounds were determined via microdilution assay. Microbiological examination revealed that compounds 13 and 14 possess a good antibacterial profile. Compound 14 was the most active and showed an antibacterial profile comparable to that of the reference drugs trovafloxacin, moxifloxacin, and ciprofloxacin. A significant MIC90 value (1.95 μg/mL) against S. aureus ATCC 25923, E. coli ATCC 35218, and E. coli ATCC 25922 was recorded for compound 14. We observed reduced metabolic activity associated with compounds 13 and 14 in the relevant bacteria via a luminescence ATP assay. Results of this assay supported the antibacterial potency of compounds 13 and 14. An E. coli DNA gyrase inhibitory assay indicated that compound 14 is a potent inhibitor of E. coli DNA gyrase. Docking studies revealed that there is a strong interaction between compound 14 and the E. coli DNA gyrase enzyme. Genotoxicity and cytotoxicity evaluations of compounds 13 and 14 showed that compound 14 is non-genotoxic and less cytotoxic compared to the reference drugs (trovafloxacin, moxifloxacin, and ciprofloxacin), which increases its biological importance.  相似文献   

20.
This work explored a novel type of potential multi-targeting antimicrobial three-component sulfanilamide hybrids in combination of pyrimidine and azoles. The hybridized target molecules were characterized by 1H NMR, 13C NMR and HRMS spectra. Some of the developed target compounds exerted promising antimicrobial activity in comparison with the reference drugs norfloxacin and fluconazole. Noticeably, sulfanilamide hybrid 5c with pyrimidine and indole could effectively inhibit the growth of E. faecalis with MIC value of 1 μg/mL. The active molecule 5c showed low cell toxicity and did not obviously trigger the development of resistance towards the tested bacteria strains. Mechanism exploration indicated that compound 5c could not only exert efficient membrane permeability, but also intercalate into DNA of resistant E. faecalis to form 5c-DNA supramolecular complex, which might be responsible for its antimicrobial action. The further investigation showed that this molecule could be effectively transported by human serum albumins through hydrogen bonds and van der Waals force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号