首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diffusive transport must play an important role in transporting nutrients into cartilage due to its avascular nature. Recent theoretical studies generally support the idea that cyclic loading enhances large molecule transport through advection. However, to date, reactive transport, i.e. the effects of solute binding, has not yet been taken into consideration in cyclically deformed cartilage. In the present study, we develop a reactive transport model to describe the potential role of binding of solute within cyclically deformed cartilage. Our results show that binding does have a significant effect on transport, particularly for the low IGF-I concentrations typical of synovial fluid. A dynamic loading regime of high strain magnitudes (up to 10%) in combination with high frequencies (e.g. 1 Hz) was seen to produce the most dramatic results with enhanced total uptake ratio as high as 25% averaged over the first 5h of cyclic loading.  相似文献   

2.
The first objective of this study was to determine the effects of physiological cyclic loading followed by unloaded recovery on the mechanical response of human intervertebral discs. The second objective was to examine how nucleotomy alters the disc?s mechanical response to cyclic loading. To complete these objectives, 15 human L5-S1 discs were tested while intact and subsequent to nucleotomy. The testing consisted of 10,000 cycles of physiological compressive loads followed by unloaded hydrated recovery. Cyclic loading increased compression modulus (3%) and strain (33%), decreased neutral zone modulus (52%), and increased neutral zone strain (31%). Degeneration was not correlated with the effect of cyclic loading in intact discs, but was correlated with cyclic loading effects after nucleotomy, with more degenerate samples experiencing greater increases in both compressive and neutral zone strain following cyclic loading. Partial removal of the nucleus pulposus decreased the compression and neutral zone modulus while increasing strain. These changes correspond to hypermobility, which will alter overall spinal mechanics and may impact low back pain via altered motion throughout the spinal column. Nucleotomy also reduced the effects of cyclic loading on mechanical properties, likely due to altered fluid flow, which may impact cellular mechanotransduction and transport of disc nutrients and waste. Degeneration was not correlated with the acute changes of nucleotomy. Results of this study provide an ideal protocol and control data for evaluating the effectiveness of a mechanically-based disc degeneration treatment, such as a nucleus replacement.  相似文献   

3.
目的 研究正常山羊腰椎间盘软骨终板营养途径.方法 选取健康24月龄山羊8只,每只山羊观察4个腰椎间盘,共32个腰椎间盘.麻醉后,行磁共振动态增强扫描,观察感兴趣区的信号变化特点.分别测量增强前及增强后0 min、5 min、10 min、30 rain、1 h、1.5 h、2 h,2.5 h、3 h、3.5 h感兴趣区信号强度值,分析时间-信号强度曲线及峰值出现时间.结果 椎体磁共振信号强度在0 min时达到高峰后迅速下降;软骨终板区在30 min时缓慢达到第一高峰后轻度下降,于2 h上升达到第二高峰;髓核在5 min内为负值,之后缓慢上升于2 h达到高峰,随后逐渐下降.结论 正常山羊腰椎椎间盘主要通过软骨终板途径进行营养代谢.  相似文献   

4.
5.
6.
目的探讨caspase-9抑制剂对低胎牛血清培养诱导的大鼠椎间盘软骨终板细胞凋亡影响的研究。方法取3月龄SD大鼠椎间盘软骨终板,序贯消化法获取细胞原代培养,以1%FBS培养48 h为诱导凋亡条件。实验分为1%FBS凋亡组、caspase-9抑制剂组(Z-LEHD-FMK)及DMSO对照组,分别处理细胞48 h,后经流式细胞仪检测细胞凋亡率、Western blot检测procaspase-9,active caspase-9及active caspase-3的表达。结果流式细胞仪检测显示,caspases-9抑制剂组细胞凋亡率(26.3±2.56)%与1%FBS组(40.8±0.84)%及DMSO组(40.2±1.56)%相比凋亡率较低,有显著统计学差异(P〈0.05);Western blot检测caspases-9抑制剂组active caspase-9及active caspase-3较1%FBS凋亡组及DMSO对照组表达均明显减少,有显著统计学意义(P〈0.05)。结论 Caspase-9抑制剂能明显抑制低胎牛血清培养诱导的大鼠椎间盘软骨终板细胞凋亡,有望成为治疗椎间盘退变的新型药物。  相似文献   

7.
Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 h of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4 kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5 N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.  相似文献   

8.
The objective of this study was to quantitatively analyze the effect of diurnal loading on the transport of various charged antibiotics into negatively charged human intervertebral disc (IVD). Transport of charged antibiotics into a human lumbar disc was analyzed using a 3D finite element model. The valence (z) of the electrical charge of antibiotics varied from z = +2 (positively charged) to z = −2 (negatively charged). An uncharged antibiotic (z = 0) was used as a control. Cases with transient antibiotic concentration at disc boundaries [to mimic intravenous (IV) infusion] were simulated. Our results showed that diurnal compression increased the concentrations in the nucleus pulposus (NP) region, but degreased the concentrations in the annulus fibrosus (AF) region for all charged or non-charged drugs. The overall concentration (averaged over disc) increased with diurnal compression. The diurnal compression had more effects on negatively charged antibiotics than positively charged ones. For example, at day 5 with diurnal compression, the diurnal compression increased the concentration of negatively charged drug (z = −1) in NP by 18.3%, but only by 6.6% for positively charged one (z = +1). In AF, diurnal compression decreased the concentration by 13.2% for negatively charged drug (z = −1) versus 1.2% for positively charged one (z = +1). Note these percentages are the averaged values over day 5. This study provides quantitative information on understanding the mechanisms of charged drug transport in human IVDs.  相似文献   

9.
Melatonin is reportedly associated with intervertebral disc degeneration (IDD). Endplate cartilage is vitally important to intervertebral discs in physiological and pathological conditions. However, the effects and mechanism of melatonin on endplate chondrocytes (EPCs) are still unclear. Herein, we studied the effects of melatonin on EPC apoptosis and calcification and elucidated the underlying mechanism. Our study revealed that melatonin treatment decreases the incidence of apoptosis and inhibits EPC calcification in a dose‐dependent manner. We also found that melatonin upregulates Sirt1 expression and activity and promotes autophagy in EPCs. Autophagy inhibition by 3‐methyladenine reversed the protective effect of melatonin on apoptosis and calcification, while the Sirt1 inhibitor EX‐527 suppressed melatonin‐induced autophagy and the protective effects of melatonin against apoptosis and calcification, indicating that the beneficial effects of melatonin in EPCs are mediated through the Sirt1‐autophagy pathway. Furthermore, melatonin may ameliorate IDD in vivo in rats. Collectively, this study revealed that melatonin reduces EPC apoptosis and calcification and that the underlying mechanism may be related to Sirt1‐autophagy pathway regulation, which may help us better understand the association between melatonin and IDD.  相似文献   

10.
Excessive mechanical tension can lead to the degeneration of endplate chondrocytes. The presence of tension-sensitive circRNA_0058097 molecules has been detected in human endplate chondrocytes, where it was found to be a potential competing endogenous RNA. Indeed, inhibiting the expression of circRNA_0058097 effectively enhanced the stress resistance of endplate chondrocytes, suggesting that it may be an important trigger point for the degeneration of endplate cartilage. Through a series of experiments, we reveal that circRNA_0058097 can upregulate the expression of downstream target gene histone deacetylase 4 by sponge adsorption of miR-365a-5p, which promoted morphological changes of endplate chondrocytes, and increased extracellular matrix degradation and degeneration of endplate cartilage. Therefore, circRNA_0058097 may provide a new way to prevent and treat endplate cartilage degeneration.  相似文献   

11.
目的:为了分离和鉴定人退变椎间盘软骨终板干细胞。方法:收集因腰椎间盘退变性疾病行腰椎间盘摘除术并植骨融合的标本。在解剖显微镜下清理软骨终板组织,并消化软骨终板,提取软骨终板细胞。获得的软骨终板细胞经过琼脂糖三维筛选系统培养后,选取细胞克隆团并进行体外扩增,扩增后的细胞行流式细胞术检测干细胞标志物证实退变软骨终板中存在干细胞。结果:共聚焦免疫荧光提示退变椎间盘软骨终板组织中存在干细胞标志物STR01、CDl05、CD73、CD90阳性的细胞。经琼脂糖三维培养基筛选的CESCs在免疫表型上符合干细胞标准。结论:在人退变椎间盘的软骨终板中存在具有多向分化潜能的干细胞。  相似文献   

12.
This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300 mOsM) or isotonic (330 mOsM) media (p<0.05). Constant exposure of SDSC-seeded constructs to 400 mOsM media from day 0 to day 49 yielded a Young's modulus of 513±89 kPa and GAG content of 7.39±0.52%ww on day 49, well within the range of values of native, immature bovine cartilage. Primary chondrocyte-seeded constructs achieved almost as high a Young's modulus, reaching 487±187 kPa and 6.77±0.54%ww (GAG) for the 400 mOsM condition (day 42). These findings suggest hypertonic loading as a straightforward strategy for 3D cultivation with significant benefits for cartilage tissue engineering strategies. In an effort to understand potential mechanisms responsible for the observed response, cell volume measurements in response to varying osmotic conditions were evaluated in relation to the Boyle–van't Hoff (BVH) law. Results confirmed that chondrocytes behave as perfect osmometers; however SDSCs deviated from the BVH relation.  相似文献   

13.
This study examines the effects of cartilage endplate (CEP) calcification and the injection of intervertebral disc (IVD) cells on the nutrition distributions inside the human IVD under physiological loading conditions using multiphasic finite element modeling. The human disc was modeled as an inhomogeneous mixture consisting of a charged elastic solid, water, ions (Na+ and Cl), and nutrient solute(oxygen,glucose and lactate) phases. The effect of the endplate calcification was simulated by a reduction of the tissue porosity (i.e., water volume faction) from 0.60 to 0.48. The effect of cell injection was simulated by increasing the cell density in the nucleus pulposus (NP) region by 50%, 100%, and 150%. Strain-dependent transport properties(e.g., hydraulic permeability and solute diffusivities) were considered to couple the solute transport and the mechanical loading. The simulation results showed that nutrient solute distribution inside the discis maintained at a stable state during the day and night. The physiological diurnal cyclic loading does not change the nutrient environment in the human IVD. The cartilage endplate plays a significant role in the nutrient supply to human IVD. Calcification of the cartilage endplate significantly reduces the nutrient levels in human IVD. Therefore, in cell based therapy for IVD regeneration, theincreased nutrient demand as a result of cell injection needs to be addressed. Excessive numbers of injected cells may cause further deterioration of the nutrient environment in the degenerated disc. This study is important for understanding the pathology of IVD degeneration and providing new insights into cell based therapies for low back pain.  相似文献   

14.
目的:为了分离和鉴定人退变椎间盘软骨终板干细胞。方法:收集因腰椎间盘退变性疾病行腰椎间盘摘除术并植骨融合的标本。在解剖显微镜下清理软骨终板组织,并消化软骨终板,提取软骨终板细胞。获得的软骨终板细胞经过琼脂糖三维筛选系统培养后,选取细胞克隆团并进行体外扩增,扩增后的细胞行流式细胞术检测干细胞标志物证实退变软骨终板中存在干细胞。结果:共聚焦免疫荧光提示退变椎间盘软骨终板组织中存在干细胞标志物STRO1、CD105、CD73、CD90阳性的细胞。经琼脂糖三维培养基筛选的CESCs在免疫表型上符合干细胞标准。结论:在人退变椎间盘的软骨终板中存在具有多向分化潜能的干细胞。  相似文献   

15.
16.
The deformational behavior of articular cartilage has been investigated in confined and unconfined compression experiments and indentation tests, but to date there exist no reliable data on the in situ deformation of the cartilage during static loading. The objective of the current study was to perform a systematic study into cartilage compression of intact human femoro-patellar joints under short- and long-term static loading with MR imaging. A non-metallic pneumatic pressure device was used to apply loads of 150% body weight to six joints within the extremity coil of an MRI scanner. The cartilage was delineated during the compression experiment with previously validated 2D and 3D fat-suppressed gradient echo sequences. We observed a mean (maximal) in situ deformation of 44% (57%) in patellar cartilage after 32 h of loading (mean contact pressure 3.6 MPa), the femoral cartilage showing a smaller amount of deformation than the patella. However, only around 7% of the final deformation (3% absolute deformation) occurred during the first minute of loading. A 43% fluid loss from the interstitial patellar matrix was recorded, the initial fluid flux being 0.217 +/- 0.083 microm/s, and a high inter-individual variability of the deformational behavior (coefficients of variation 11-38%). In conjunction with finite-element analyses, these data may be used to compute the load partitioning between the solid matrix and fluid phase, and to elucidate the etiologic factors relevant in mechanically induced osteoarthritis. They can also provide direct estimates of the mechanical strain to be encountered by cartilage transplants.  相似文献   

17.
Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain.  相似文献   

18.
Abnormal mechanical loading may trigger cartilage degeneration associated with osteoarthritis. Tissue response to load has been the subject of several in vitro studies. However, simple stimuli were often applied, not fully mimicking the complex in vivo conditions. Therefore, a rolling/plowing explant test system (RPETS) was developed to replicate the combined in vivo loading patterns. In this work we investigated the mechanical behavior of bovine nasal septum (BNS) cartilage, selected as tissue approximation for experiments with RPETS, under static and dynamic loading. Biphasic material properties were determined and compared with those of other cartilaginous tissues. Furthermore, dynamic loading in plowing modality was performed to determine dynamic response and experimental results were compared with analytical models and Finite Elements (FE) computations. Results showed that BNS cartilage can be modeled as a biphasic material with Young's modulus E=2.03±0.7 MPa, aggregate modulus HA=2.35±0.7 MPa, Poisson's ratio ν=0.24±0.07, and constant hydraulic permeability k0=3.0±1.3×10−15 m4 (N s)−1. Furthermore, dynamic analysis showed that plowing induces macroscopic reactions in the tissue, proportionally to the applied loading force. The comparison among analytical, FE analysis and experimental results showed that predicted tangential forces and sample deformation lay in the range of variation of experimental results for one specific experimental condition. In conclusion, mechanical properties of BNS cartilage under both static and dynamic compression were assessed, showing that this tissue behave as a biphasic material and has a viscoelastic response to dynamic forces.  相似文献   

19.
Molecular consequences of long-term deformation and altered mechanical loading of intervertebral disc (IVD) tissue in scoliosis have yet to be elucidated. We hypothesized that histological disc degeneration is faster in scoliosis than in normal ageing and that this is reflected by an altered gene expression profile. A semiquantitative histodegeneration score (HDS) revealed significantly enhanced degeneration in scoliosis (HDS 5.3) versus age-matched control IVDs (HDS 2.25; p = 0.001). Gene expression analysis by cDNA array and RT-PCR demonstrated higher mRNA levels for extracellular-matrix molecules like aggrecan, biglycan, decorin, lumican, chondromodulin, and COL2A1 in scoliotic discs versus normal discs of identical degeneration score. No differences were evident for catabolic molecules like MMP3, MMP13, MMP17, and TIMP1. In sum, morphologic disc degeneration was accelerated by about 2 decades in scoliosis versus physiological ageing and developed against a background of stronger anabolic matrix metabolism at younger age or in response to the altered mechanical environment of the tissue.  相似文献   

20.
目的:探究白细胞介素-17(interleukin-17,IL-17)对体外培养髓核细胞增殖和细胞代谢的影响。方法:髓核细胞取自经核磁共振影像确认需手术的退变椎间盘组织,建立体外培养体系。用2、5、10、15、20 ng/mL IL-17刺激髓核细胞72 h后,MTS法检测细胞增殖情况。用适当浓度IL-17刺激细胞48 h或96 h后,采用实时定量-PCR和免疫印迹方法检测基质和组织代谢相关基因的mRNA和蛋白表达。结果:IL-17刺激可以抑制体外培养髓核细胞的增殖,且15 ng/mL浓度的抑制作用最强。15 ng/mL IL-17刺激髓核细胞后,聚集蛋白聚糖(aggrecan,ACAN)和I型胶原(type I collagen,COL1A1)mRNA表达水平显著下降(P0.05),基质金属蛋白酶(matrix metalloproteinase-3,MMP3)、金属蛋白酶3组织抑制剂(tissue inhibitor of metalloproteinase-3,TIMP3)的mRNA表达水平显著上升(P0.05)。COL2A1 mRNA的表达下降,MMP13、含Ⅰ型血小板结合蛋白基序的结聚蛋白样金属蛋白酶(a disintegrin like and metalloproteinase with thrombospondin typeⅠ motifs-4,ADAMTS4)、ADAMTS5、TIMP1 mRNA的表达上升,但差异均不显著(P0.05)。IL-17刺激48 h时,COL1A1的蛋白水平明显下降(P=0.010),而ADAMTS5的蛋白水平显著上升(P=0.005)。但刺激96h时,COL1A1的蛋白表达下降,ADAMTS5的蛋白表达上升,但无显著差异(P0.05);COL2A1的蛋白表达水平显著下降(P=0.037)。结论:IL-17可抑制体外培养髓核细胞的增殖及代谢,在椎间盘的退变过程中可能发挥了重要的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号