首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doubly uniparental inheritance (DUI) is a mode of inheriting mitochondrial DNA that is distinct from strictly maternal inheritance. It has been described in nine and three families of marine and freshwater mussels, respectively, including the European margaritiferids and unionids. Among the 16 freshwater species of Unionida inhabiting Europe, DUI has been described in 9 species of dioecious mussels and was absent from a single hermaphroditic species and from secondary hermaphroditic specimens. The DUI freshwater mussels include two vastly genetically different mitochondrial genomes: maternal (F genome) and paternal (M genome), which coexist within the same specimen but in different tissues. The F genome is present in all female tissues and somatic male tissues. It is inherited in the typical, maternal, manner. Conversely, the M genome is located primarily in the male gonads and generative cells, and is inherited paternally. Dioecious Unionidae display unique characteristics that have been interrelated for over 200 million years: a high fidelity of the transmission of the F and M genomes in DUI and two paths of spermatogenesis–the typical path that produces sperm cells containing mitochondria with the F genome and the atypical path that produces sperm cells with the M genome. The mitogenomes of freshwater mussels display unique features that are not present in any other animal, that is, an additional, gender-specific gene and an elongated cox2 gene occurring exclusively in the M genome. These features mean that the mitochondria, in addition to their basic function of producing energy, also may take part in determining sex in these dioecious organisms.  相似文献   

2.
Huntington’s disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-l-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.  相似文献   

3.
Long-term preservation of muscle mitochondria for consequent functional analysis is an important and still unresolved challenge in the clinical study of metabolic diseases and in the basic research of mitochondrial physiology. We here present a method for cryopreservation of mitochondria in various muscle types including human biopsies. Mitochondrial function was analyzed after freeze-thawing permeabilized muscle fibers using glycerol and dimethyl sulfoxide as cryoprotectant. Using optimal freeze-thawing conditions, high rates of adenosine 5(')-diphosphate-stimulated respiration and high respiratory control were observed, showing intactness of mitochondrial respiratory function after cryopreservation. Measurement of adenosine 5(')-triphosphate (ATP) formation showed normal rates of ATP synthesis and ATP/O ratios. Intactness of the outer mitochondrial membrane and functional coupling between mitochondrial creatine kinase and oxidative phosphorylation were verified by respiratory cytochrome c and creatine tests. Simultaneous confocal imaging of mitochondrial flavoproteins and nicotinamide adenine dinucleotide revealed normal intracellular arrangement and metabolic responses of mitochondria after freeze-thawing. The method therefore permits, after freezing and long-term storage of muscle samples, mitochondrial function to be estimated and energy metabolism to be monitored in situ. This will significantly expand the scope for screening and exchange of human biopsy samples between research centers, thus providing a new basis for functional analysis of mitochondrial defects in various diseases.  相似文献   

4.
The advent of global warming has given rise to the issue on how temperature impacts the susceptibility of ectothermic organisms to pollution. The purpose of this study was to examine the effects of pharmaceutical products and domestic wastewaters on temperature-dependent mitochondrial electron transport activity in the freshwater mussel Elliptio complanata. Mitochondria from mussels were freshly prepared and exposed to increasing concentrations of various pharmaceutical products known to be found in municipal effluents for 30 min at 4, 12 and 20 degrees C. Electron transport activity as well as lipid peroxidation and DNA strand breaks were determined in the mitochondria. Next, mussels were placed in the aeration lagoons of two municipal wastewater treatment plants for 30 days. Mitochondrial electron transport (MET), temperature-dependent MET (MET(T)) and lipid peroxidation in gonad were then determined. The results show that all products were able to increase MET activity, but at two different ranges of threshold concentration. Certain pharmaceutical products (i.e., ibuprofen, cotinine, fluoxetine, coprostanol and trimethoprim) increased MET(T) at a lower threshold concentration than observed at 20 degrees C. Products of lesser potency in reducing lipid peroxidation were those that produced more DNA strand breaks in mitochondria. Both MET and MET(T) were significantly increased in mussels exposed to aeration lagoon effluents. Lipid peroxidation was also increased in the gonad and was significantly correlated with MET and MET(T) activities. The data indicate that pharmaceutical products and municipal effluents increase respiration rates in isolated mitochondria, such that interaction with temperature could enhance the susceptibility of mitochondrial energy production and oxidative stress in environments contaminated by domestic wastewater.  相似文献   

5.
Skeletal muscle (SKM) requires a large amount of energy, which is produced mainly by mitochondria, for their daily functioning. Of the several mitochondrial complexes, it has been reported that the dysfunction of complex II is associated with several diseases, including myopathy. However, the degree to which complex II contributes to ATP production by mitochondria remains unknown. As complex II is not included in supercomplexes, which are formed to produce ATP efficiently, we hypothesized that complex II-linked respiration was lower than that of complex I. In addition, differences in the characteristics of complex I and II activity suggest that different factors might regulate their function. The isolated mitochondria from gastrocnemius muscle was used for mitochondrial respiration measurement and immunoblotting in male C57BL/6J mice. Student paired t-tests were performed to compare means between two groups. A univariate linear regression model was used to determine the correlation between mitochondrial respiration and proteins. Contrary to our hypothesis, complex II-linked respiration was not significantly less than complex I-linked respiration in SKM mitochondria (complex I vs complex II, 3402 vs 2840 pmol/[s × mg]). Complex I-linked respiration correlated with the amount of complex I incorporated in supercomplexes (r = 0.727, p < 0.05), but not with the total amount of complex I subunits. In contrast, complex II-linked respiration correlated with the total amount of complex II (r = 0.883, p < 0.05), but not with the amount of each complex II subunit. We conclude that both complex I and II play important roles in mitochondrial respiration and that the assembly of both supercomplexes and complex II is essential for the normal functioning of complex I and II in mouse SKM mitochondria.  相似文献   

6.
Lamellarin D (Lam D), a marine alkaloid, exhibits a potent cytotoxicity against many different tumors. The pro-apoptotic function of Lam D has been attributed to its direct induction of mitochondrial permeability transition (MPT). This study was undertaken to explore the mechanisms through which Lam D promotes changes in mitochondrial function and as a result apoptosis. The use of eight Lam derivatives provides useful structure-apoptosis relationships. We demonstrate that Lam D and structural analogues induce apoptosis of cancer cells by acting directly on mitochondria inducing reduction of mitochondrial membrane potential, swelling and cytochrome c release. Cyclosporin A, a well-known inhibitor of MPT, completely prevents mitochondrial signs of apoptosis. The drug decreases calcium uptake by mitochondria but not by microsomes indicating that Lam D-dependent permeability is specific to mitochondrial membranes. In addition, upon Lam D exposure, a rapid decline of mitochondrial respiration and ATP synthesis occurs in isolated mitochondria as well as in intact cells. Evaluation of the site of action of Lam D on the electron-transport chain revealed that the activity of respiratory chain complex III is reduced by a half. To determine whether Lam D could induce MPT-dependent apoptosis by inhibiting mitochondrial respiration, we generated respiration-deficient cells (ρ0) derived from human melanoma cells. In comparison to parental cells, ρ0 cells are totally resistant to the induction of MPT-dependent apoptosis by Lam D. Our results indicate that functional mitochondria are required for Lam D-induced apoptosis. Inhibition of mitochondrial respiration is responsible for MPT-dependent apoptosis of cancer cells induced by Lam-D.  相似文献   

7.
The effect of emestrin, a new macrocyclic epidithiodioxopiperazine mycotoxin from severalEmericella species, on mitochondrial reactions was studied using isolated rat liver mitochondria to gain insight into the molecular mechanism for itsin vivo toxicity to rat and mouse. Emestrin was found to inhibit ATP synthesis in mitochondria causing an uncoupling of oxidative phosphorylation and a depression of respiration in isolated mitochondria. In addition to these effects on mitochondrial respiration, emestrin elicited a dratsic structural alteration (swelling) of mitochondria as observed in thein vivo system. The mitochondrial swelling was significantly enhanced by the subsequent addition of calcium ion. Emestrin B, in which dithio group is replaced by trithio group, exerted an uncoupling effect on oxidative phosphorylation without accompanying such depressive effect on state 3 respiration as observed for emestrin.  相似文献   

8.
It has previously been shown that mitochondrial proton conductance decreases with increasing body mass in mammals and is lower in a 250-g lizard than the laboratory rat. To examine whether mitochondrial proton conductance is extremely low in very large reptiles, hepatocytes and mitochondria were prepared from saltwater crocodiles ( Crocodylus porosus) and freshwater crocodiles ( Crocodylus johnstoni). Respiration rates of hepatocytes and liver mitochondria were measured at 37 degrees C and compared with values obtained for rat or previously measured for other species. Respiration rates of hepatocytes from either species of crocodile were similar to those reported for lizards and approximately one fifth of the rates measured using cells from mammals (rat and sheep). Ten-to-thirty percent of crocodile hepatocyte respiration was used to drive mitochondrial proton leak, similar to the proportion in other species. Respiration rates of crocodile liver mitochondria were similar to those of mammalian species. Proton leak rate in isolated liver mitochondria was measured as a function of membrane potential. Contrary to our prediction, the mitochondrial proton conductance of liver mitochondria from crocodiles was greater than that of liver mitochondria from lizards and was similar to that of rats. The acyl composition of liver mitochondrial phospholipids from the crocodiles was more similar to that in mitochondria from rats than in mitochondria from lizards. The relatively high mitochondrial proton conductance was associated with a relatively small liver, which seems to be characteristic of crocodilians. Comparison of data from a number of diverse ectothermic species suggested that hepatocyte respiration rate may decrease with body mass, with an allometric exponent of about -0.2, similar to the exponent in mammalian hepatocytes. However, unlike mammals, liver mitochondrial proton conductance in ectotherms showed no allometric relationship with body size.  相似文献   

9.
The respiration of mitochondria isolated from various plant tissues was studied over a range of mitochondrial concentrations and at various times after isolation. Respiration at 25 C expressed as nanomoles of O2 per minute per milligram of protein was constant for mitochondrial concentrations higher than some critical amount, usually 0.25 to 1.0 milligram of protein per reaction. Below this concentration the state 3 respiration rate declined and the mitochondria appeared to lose respiratory control. The respiration of isolated mitochondria stored in ice but measured at 25 C generally declined over long time periods although mitochondria from some tissues showed an initial increase. The results indicate that valid comparisons of the respiratory activity of mitochondria isolated from different tissues or from different parts of the same tissue cannot be made at least until the influence of the above factors has been evaluated.  相似文献   

10.
The sensitivity of the tissue respiration of two tumours and liver slices to heat has been studied. The tumour tissue is sensitive to in vitro preincubation at temperatures above 43°C, whereas liver slices were less temperature sensitive. The inclusion of 1 mM tetracaine during preincubation sensitizes the tumour tissue to heating. In vivo heating of the tumour tissue at 44°C for 1h was not inhibitory of respiration when subsequently measured at 37°C. Mitochondria isolated from the D23 hepatoma tissue showed coupled respiration, however mitochondria isolated from in vivo heated tumour did not show coupled respiration. It contrast to mitochondria isolated from unheated tissue, these mitochondria lacked cristae and contained electron-dense granules, indicators of damage. The lack of effect of an in vivo heat-dose, known to cause tumour regression, on respiration and the reports that ATP levels are unaffected by such heating, suggests that cell respiration is not a primary lesion in cellular heat injury. This implies that the observed impairment of mitochondrial function following in vivo heating is best explained if the heating sensitized the mitochondria to subsequent damage during isolation.  相似文献   

11.
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.  相似文献   

12.
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.  相似文献   

13.
14.
Cryopreservation of spermatozoa is of essential importance for artificial insemination and breeding programs in horses. Besides other factors, spermatozoal motility depends on mitochondrial energy metabolism. Based on changes of single mitochondrial functions it has been suggested that mitochondrial damage during cryopreservation could be a major reason for diminished post thaw semen quality. However, it is still unclear to which extent this influences the whole bioenergetic performance of mitochondria and whether this plays a role during routine cryopreservation procedures. Therefore, it was the aim of this study to compare changes in mitochondrial bioenergetics in spermatozoa during shock freezing and routine cryopreservation. Mitochondrial integrity in spermatozoa was studied by determination of oxygen consumption, mitochondrial membrane potential, and the oxidation of externally added cytochrome c(2+). Shock freezing of spermatozoa resulted in an irreversible loss of mitochondrial functions. However, respiration difference of uncoupled minus resting state and routine respiration also decreased by 48+/-14 and 58+/-6% (p<0.05), respectively, after routine cryopreservation. This was accompanied by a decline in the mitochondrial membrane potential to 83+/-4% (p<0.05) and spermatozoal motility to 56+/-11% (p<0.05) of pre-freezing values. In contrast, the oxidation rates of externally added cytochrome c(2+) by cytochrome c oxidase slightly increased by 26+/-14% (p<0.1) suggesting a partial rupture of cellular and outer mitochondrial membranes. Our data indicate that also widely used cryopreservation protocols for equine spermatozoa need adjustment to optimize post thaw mitochondrial functions.  相似文献   

15.
Healthy mitochondria are required in cell metabolism and deregulation of underlying mechanisms is often involved in human diseases and neurological disorders. Post-translational modifications of mitochondrial proteins regulate their function and activity, accordingly, impairment of ubiquitin proteasome system affects mitochondria homeostasis and organelle dynamics. In the present study we have investigated the role of the ubiquitin protease Ubp8 in S. cerevisiae respiration. We show that Ubp8 is necessary for respiration and its expression is upregulated in glycerol respiratory medium. In addition, we show that the respiratory defects in absence of Ubp8 are efficiently rescued by disruption of the E3 Ub-ligase Psh1, suggesting their epistatic link. Interestingly, we found also that Ubp8 is localized into mitochondria as single protein independently of SAGA complex assembly, thus suggesting an independent function from the nuclear one. We also show evidences on the importance of HAT Gcn5 in sustaining Ubp8 expression and affecting the amount of protein in mitochondria. Collectively, our results have investigated the role of Ubp8 in respiratory metabolism and highlight the role of ubiquitin related pathways in the mitochondrial functions of S. cerevisiae.  相似文献   

16.
M. Miko  B. Chance 《BBA》1975,396(2):165-174
This paper describes the uncoupling effect of three isothiocyanates: p-bromophenylisothiocyanate, 4,4′-diisothiocyanatebiphenyl and β-naphtylmethylisothiocyanate on the respiration of Ehrlich-Lettré cells and isolated mitochondria. The isothiocyanates are similar to other uncouplers (such as 2,4-dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone) in that they: 1. stimulate respiration of state 4 mitochondria; 2. stimulate mitochondrial ATPase activity; 3. release the inhibition of mitochondrial respiration by oligomycin and 4. inhibit both mitochondrial respiration and mitochondrial ATPase activity at higher molar concentrations. The uncoupling activity of these isothiocyanates correlates well with their biological activity. Maximal activation of a latent mitochondrial ATPase activity of rat liver mitochondria in the presence of p-bromophenylisothiocyanate was found at a concentration of 15 μM. The investigated isothiocyanates differ significantly in their solubility in organic solvents and their chemical reactivity. We assume that the greater the partition coefficient in a series of isothiocyanates grouped according to the increasing value of log P (partition coefficient for the system octanol/water, 25 °C), the greater will be their uncoupling activity, but only up to a certain degree. Any further increase of log P will be marked by a decrease of this activity.  相似文献   

17.
聂唯天  张歌  胡赢心  宫健  单春华 《生物磁学》2014,(12):2394-2396
OPA1(Optic Atrophy 1)基因属于核基因,编码的蛋白是线粒体内源发动蛋白,是线粒体塑形蛋白家族的成员。OPA1蛋白通过不同位点的剪接,形成多种亚型,参与线粒体内膜融合,对线粒体形态结构有着重要的作用。OPA1与呼吸作用复合物直接相关,作为呼吸链的一部分,保持呼吸链的完整性,参与呼吸作用和能量代谢;在细胞凋亡过程中则以OPA1-PARL复合体的形式发挥抗凋亡因子的作用。研究显示,OPA1在类固醇物质的生成等方面,也有着不可替代的作用。OPA1对多种疾病有影响,是显性视神经萎缩症(Dominant Optic Atrophy,DOA)的主要基因座,OPA1突变不仅会导致视觉疾病,也能引起听觉神经病变.OPA1还参与热休克应答,在抗癌药毒性抑制方面也有重要作用。本文着重于介绍OPA1的结构与功能,及其在疾病中的作用。  相似文献   

18.
Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.  相似文献   

19.
  • 1.1. It is shown that Ca2+-dependent activation of respiration of liver mitochondria from hibernating ground squirrels is accompanied by mitochondrial swelling.
  • 2.2. The swelling of mitochondria from hibernating ground squirrels, as well as the activation of mitochondrial respiration, is precluded by cyclosporin A, p-bromphenacylbromide and oligomycin. Carboxyatractiloside, on the contrary, under these conditions favors the swelling and the acceleration of respiration.
  • 3.3. It was concluded that Ca2+-dependent activation of hibernating ground squirrel liver mitochondrial respiration resulted from the appearance of a non-specific permeability pathway and from swelling of mitochondria.
  相似文献   

20.
Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as well as in the nucleus suggests that mutations in mitochondrial DNA (mtDNA) contribute to the carcinogenesis in the myh?/?/ogg1?/? double knockout mouse.In order to test this hypothesis, we analyzed mtDNA mutagenesis and mitochondrial function in young (1 month) and adult (6 months) wt and myh?/?/ogg1?/? mice. To our surprise, the absence of OGG1 and MYH had no impact on mtDNA mutation rates in these mice, even at the onset of cancer. This indicates that mtDNA mutagenesis is not responsible for the carcinogenesis of myh?/?/ogg1?/? mice. In line with these results, mitochondrial function was unaffected in the cancerous tissues liver and lung, whereas a significant reduction in respiration capacity was observed in brain mitochondria from the adult myh?/?/ogg1?/? mouse. The reduced respiration capacity correlated with a specific reduction (?25%) in complex I biochemical activity in brain mitochondria.Our results demonstrate that mtDNA mutations are not associated with cancer development in myh?/?/ogg1?/? mice, and that impairment of mitochondrial function in brain could be linked to nuclear DNA mutations in this strain. OGG1 and MYH appear to be dispensable for antimutator function in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号