首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new coordination polymer Zn(II) with thiosemicarbazone glyoxalic acid H2GAT was obtained in this study. According to the X-ray diffraction data, the coordination of the Zn(II) ion is carried out by one sulfur atom, in the thiol form, one nitrogen atom of the azomethine group and two oxygen atoms of the carboxylate groups, one of which belongs to neighbouring complex molecule. The oxygen atom of the water molecule completes Zn(II) ion environment to a distorted square-pyramidal structure. The binding of the monomer complex into polimer occurs through the bridge oxygen atom of carboxylate group. This complex is effective inhibitor of the α-glycosidase, butyrylcholinesterase (BChE), cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase enzymes (AChE) enzymes with Ki values of 1.45 ± 0.23 µM for hCA I, 2.04 ± 0.11 µM for hCA II, 3.47 ± 0.88 µM for α-glycosidase, 0.47 ± 0.10 µM for BChE, and 0.58 ± 0.13 µM for AChE, respectively.  相似文献   

2.
Zinc(II) complexes of thiones having the general formula [ZnL2Cl2] where L = N-methylthiourea (Metu), N,N′-dimethylthiourea (Dmtu), tetramethylthiourea (Tmtu), N,N′-diethylthiourea (Detu), and diazinane-2-thione (Diaz), were prepared by reacting ZnCl2 with the corresponding thiones. They were characterized by elemental analysis, IR and NMR spectroscopy and two of them {[(Tmtu)2ZnCl2] (1) and [(Diaz)2ZnCl2] (2)} using X-ray crystallography. The spectral data suggests that the coordination of thiones to zinc(II) occurs through the sulfur atom as indicated by an up field shift in the CS resonance of thiones in 13C NMR and downfield shift in N-H resonance in 1H NMR. The crystal structures of the complexes show a tetrahedral coordination environment around the zinc atoms with the bond angles ranging from 99.33(5)° to 116.81(7)°. Antimicrobial activities of the complexes were evaluated by minimum inhibitory concentration and the results showed that the complexes exhibited significant activities against gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and yeasts (Candida albicans, Saccharomyces cerevisiae). However, moderate activity was observed against molds (Aspergillus niger, Penicillium citrinum). The complexes were also tested for inhibition activity against an enzyme, Alkaline Phosphatase EC 3.1.3.1 and were found to be active inhibitors.  相似文献   

3.
Five dissymmetric tridentate Schiff base ligands, containing a mixed donor set of ONN and ONO were prepared by the reaction of benzhydrazide with the appropriate salicylaldehyde and pyridine-2-carbaldehyde and characterized by FT-IR, 1H and 13C NMR. The complexes of these ligands were synthesized by treating an ethanolic solution of the appropriate ligand and one equivalent Et3N with an equimolar amount of MnCl2 · 4H2O or alternatively by a more direct route in which an ethanolic solution of benzhydrazide was added to ethanolic solution of appropriate salicylaldehyde and MnCl2 · 4H2O solution to yield [MnCl(L1)(H2O)2], [Mn(L2)2(H2O)2], [MnCl(L3)], [MnCl(L4)] and [MnCl2(H2O)(L5)]. The hydrazone Schiff base ligands and their manganese complexes including HL1-4 and L5 (HL1 = benzoic acid (2-hydroxy-3-methoxy-benzylidene)-hydrazide, HL2 = benzoic acid (2,3-dihydroxy-benzylidene)-hydrazide, HL3 = benzoic acid (2-hydroxy-benzylidene)-hydrazide, HL4 = benzoic acid (5-bromo-2-hydroxy-benzylidene)-hydrazide, L5 = benzoic acid pyridine-2-yl methylene-hydrazide) were characterized on the basis of their FT-IR, 1H and 13C NMR, and molar conductivity. The crystal structures of HL1 and [MnCl2(H2O)L5] have been determined. The results suggest that the Schiff bases HL1, HL2, HL3, and HL4 coordinate as univalent anions with their tridentate O,N,O donors derived from the carbonyl and phenolic oxygen and azomethine nitrogen. L5 is a neutral tridentate Schiff base with N,N,O donors. ESI-MS for the complexes Mn-L2,3,5 provided evidence for the presence of multinuclear complexes in solution. Catalytic ability of Mn-L1-5 complexes were examined and found that highly selective epoxidation (>95%) of cyclohexene was performed by iodosylbenzene in the presence of these complexes and imidazole in acetonitrile.  相似文献   

4.
Two new copper(II) complexes of the type [Cu(L)X2), where L = (E)-N-phenyl-2-[phenyl (pyridine-2-yl)methylene]hydrazinecarboxamide X = Cl/Br have been synthesized and characterized by elemental analyses, FAB (fast atomic bombardment) magnetic measurements, electronic absorption, conductivity measurements cyclic voltammetry (CV) and Electron paramagnetic resonance (epr) spectroscopy. The structures of these complexes determined by single crystal X-ray crystallography show a distorted square based pyramidal (DSBP) geometry around copper(II) metal center. The distorted CuN2OX (X = Cl/Br) basal plane in them is comprised of two nitrogen and one oxygen atoms of the meridionally coordinated ligand and a chloride or bromide ion and axial position is occupied by other halide ion. The epr spectra of these complexes in frozen solutions of DMSO showed a signal at g ca. 2. The trend in g-value (g|| > g > 2.00) suggest that the unpaired electron on copper(II) has dx2-y2 character. Biological activities in terms of superoxide dismutase (SOD) and antimicrobial properties of copper(II) complexes have also been measured. The superoxide dismutase activity reveals that these two complexes catalyze the fast disproportionation of superoxide in DMSO solution.  相似文献   

5.
Two new magnetic copper compounds were obtained using the 4,4,4-trifluoro-1-furoylbutane-1,3-dione (Ftfac) ligand and two nitroxide radicals: 3-pyridyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITmPy) and 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-N-oxy (Tempol). The complexes with formula [Cu(Ftfac)2(NITmPy)2] (1) and [Cu(Ftfac)2(Tempol)] (2) were structurally characterized by single-crystal X-ray diffraction. In compound 1, the copper ion has a distorted octahedral environment, bound to two NITmpPy ligands through the nitrogen atom of the pyridine ring. In compound 2, the copper ion has a distorted pyramidal environment in which the apical position is occupied by the oxygen atom of the Tempol hydroxyl group. The temperature dependence of the magnetic susceptibility of the two compounds was investigated. It was found that compound 1 presents ferromagnetic interaction (J = 9.1 cm−1) among copper(II) ions and NITmPy radicals. As a result of the interconnection between molecular moieties through H-bonds, compound 2 presents an unusual magnetic behavior with alternating ferro- and antiferromagnetic interactions.  相似文献   

6.
Two new trinuclear complexes, Cu3L2(py)2 (1) and Ni3L2(py)4 (2), have been synthesized and characterized, where L3− is N-2-methyl-acryloyl-salicylhydrazidate. Central metal ion and two terminal metal ions in the two complexes are combined by two bridging deprotonated L3− ligands, forming a bent trinuclear structure unit with an M-N-N-M-N-N-M core. The bent angles in complexes 1 and 2 are 167.6(1)° and 75.4(1)°, respectively. Three nickel ions in compound 2 exhibit alternating square-planar and octahedral geometries, while three copper ions in compound 1 follow square-planar mode. The studies in solution integrity and stability of compounds 1 and 2 show they are soluble and stable in DMF. UV-Vis titrations demonstrate compound 1 is stable in DMF even in the presence of excess metal ions. Antibacterial screening data indicate the two compounds all have stronger antimicrobial activities against the tested microorganisms than ligand. The trinuclear copper compound 1 is more active than monocopper compounds in the previous study, and the trinuclear nickel compound 2 is less active than tetranuclear nickel compound in the previous study.  相似文献   

7.
Two new compounds of Cu(II) of stoichiometry CuCl4(polyamineH2) containing the polyamines (PA): spermidine or spermine were prepared. Their synthesis, spectroscopic and structural characterization are herein described. The obtained complex with spermidine was characterized by elemental and thermogravimetric analysis, electronic and infrared spectroscopy. In the case of the compound with spermine, crystals were obtained. So, beside all other techniques the compound was also characterized by single crystal X-ray diffractometry. In both cases the species [CuCl4]2− is present and displays a similar polymeric structure. The X-ray, infrared and electronic spectra are herein discussed based on structural peculiarities of the compounds.  相似文献   

8.
The chelating ligand tris-[2-(3-aryl-imidazol-2-ylidene)ethyl]amine (TIMENR, R = aryl = 2,6-xylyl (xyl), mesityl (mes)) has provided access to reactive transition metal complexes. Here, two new tripodal N-heterocyclic carbene ligands of the TIMENR system (R = aryl = tolyl (tol), 3,5-xylyl (3,5xyl)), featuring sterically less demanding aryl substituents were synthesized. With these ligands, Fe(II) precursor complexes could be obtained, namely [(TIMENtol)Fe](BF4)2 (3) and [(TIMEN3,5xyl)Fe(CH3CN)](PF6)2 (7), which showed unexpected reactivity upon reduction. Treatment of the compounds with sodium amalgam yield the tris- and bis-metallated products, [(TIMENtol∗∗∗)Fe] (4) and [(TIMEN3,5xyl∗∗)Fe] (8), respectively. While the Fe(III) complex 4 is relatively inert towards oxygen, the Fe(II) complex 8 is prone to oxidation. This oxidation of 8 can readily be observed in chlorinated solvents, producing the Fe(III) complex [(TIMEN3,5xyl∗∗)Fe](PF6) (9). All new ligand imidazolium precursors and metal complexes were characterized by single crystal X-ray structure determination.  相似文献   

9.
A potential tetradentate indolecarboxamide ligand, H4L3 is synthesized and investigated for its coordination abilities towards Ni(II) and Cu(II) ions. Two H4L3 ligands in their tetra-deprotonated form [L3]4−, were found to coordinate two metal centers resulting in the formation of [Ni2(L3)2]4− (5) and [Cu2(L3)2]4− (6) complexes. The crystal structure of 6 displays the formation of a dinuclear structure where two fully deprotonated ligands, [L3]4− hold two copper(II) ions together. Even more interesting is the fact that both deprotonated ligands, [L3]4− coordinate the copper ions in an identical and symmetrical fashion. The Na+ cations present in the complex 6 stitch together the dinuclear units resulting in the formation of a coordination chain polymer. Four sodium ions connect two dinuclear units via interacting with the Oamide groups. Further, Na+ cations were found to coordinate several DMF molecules; some of them are terminal and a few are bridging in nature. The solution state structure (determined by the NMR spectral analysis) of the diamagnetic complex 5 also supported the fact that two deprotonated ligands, coordinate two nickel ions in an identical and symmetrical fashion. Absorption spectral studies reveal that the solid-state square-planar geometry is retained in solution and both complexes do not show any tendency to coordinate potential axial ligands. The variable-temperature magnetic measurements and EPR spectra indicate spin-spin exchange between two copper centers in complex 6. The electrochemical results for both complexes show three irreversible oxidative responses that correspond to the oxidation of first and second metal ion followed by the ligand oxidation, respectively.  相似文献   

10.
Two copper(II) complexes, [Cu(qsal)Cl](DMF) (1) and [Cu2(qsalBr)2Cl2](DMF) (2), with tridentate Schiff base ligands, 8-(salicylideneamino)quinoline (Hqsal) and 8-(5-bromo-salicylideneamino)quinoline (HqsalBr), respectively, were synthesised and structurally characterized. Each copper(II) ion in the two complexes is in a distorted square pyramidal N2OCl2 environment. Complex 1 exists as a polymeric species via equatorial-apical chloride bridges, whereas 2 is a di-chlorido-bridged dinuclear complex, where each bridging chloride simultaneously occupies an in-plane coordination site on one copper(II) ion and an apical site on the other copper(II) ion. Variable-temperature magnetical susceptibility measurements on the two complexes in the temperature range 2-300 K indicate the occurrence of intrachain ferromagnetic (J = +6.58 cm−1) and intramolecular antiferromagnetical (J = −6.91 cm−1) interactions.  相似文献   

11.
Two Salen-type ligands (H2L1, 4,4′-dichloro-2,2′-[(1,3-propylene)dioxybis(nitrilomethylidyne)]diphenol and H2L2, 4,4′-dinitro-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol) and their corresponding complexes ({[CoL1(MeOH)]2(OAc)2Co} · 2MeOH and [CuL2]2) have been synthesized and characterized by element analyses, 1H NMR, FT-IR and UV-Vis spectra, TG-DTA and single crystal X-ray crystallography. Crystallographic data suggests the octahedral geometry for Co(II) complex and square-pyramidal geometry for Cu(II) complex. Furthermore, the fluorescence behavior of Cu(II) complex in DMSO is discussed.  相似文献   

12.
The metal complexation properties of a functionalized N3O2 donor ligand H2L2, where H2L2 stands for 2,6-diacetyl-4-carboxymethyl-pyridine bis(benzoylhydrazone), are investigated by structural and spectroscopic (IR, ESI-MS and EPR) characterization of its Mn(II) and Co(II) complexes. The ligand H2L2 is observed to react essentially in the same fashion as its unmodified parent H2L1 producing mixed-ligand [M(H2L2)(Cl2)] complexes (M = MnII (1), CoII (3)) upon treatment with MCl2. Complexes [M(HL2)(H2O)(EtOH)]BPh4 (M = Mn 2, M = Co 4), incorporating the supporting ligand in the partially deprotonated form (HL2), are formed by salt elimination of the [M(H2L2)(Cl2)] compounds with NaBPh4. Compounds 2 and 4 are isostructural featuring distorted pentagonal-bipyramidal coordinated MnII and CoII ions, with the H2O and EtOH ligands bound in axial positions. Intermolecular hydrogen bonding interactions of the type M-OH2?O-M involving the H2O ligands and the carbonyl functions of the supporting ligand assembles the complexes into dimers. Temperature-dependent magnetic susceptibility measurements (2-300 K) show a substantially paramagnetic Curie behavior for the Mn2+ compound (2) influenced by zero-field splitting and significant orbital angular momentum contribution for 4 (high-spin CoII). The exchange coupling across the MnII-OH2?O-MnII bridges in 2 was found to be less than 0.1 cm−1, suggesting that no significant intradimer exchange coupling occurs via this path.  相似文献   

13.
The reactions of zinc and cadmium salts with 2,2′-biimidazole (H2biim) yielded a series of compounds in which the ligand is coordinated in the chelating bidentate mode. ZnCl2 and [Ag(H2biim)](NO3) in methanol in a 2:1 proportion produced Zn(H2biim)Cl2, in which the metal has a distorted tetrahedral coordination. A 1:2 ratio led to [Zn(H2biim)2(CH3OH)2](NO3)2, containing an octahedrally coordinated Zn(II) center with the O-bonded methanol ligands occupying trans positions. The corresponding [Cd(H2biim)2(CH3OH)2](NO3)2 compound was obtained from CdCl2. By starting with Cd(NO3)2 and Cd(ClO4)2 in aqueous media, the related octahedral bis-chelate compounds [Cd(H2biim)2(NO3)(H2O)](NO3) and Cd(H2biim)2(ClO4)2, respectively, were isolated, the apical positions being filled by perchlorate oxygens in the latter case. With Cd(BF4)2, the glass container participated in the reaction and a tris-chelate complex [Cd(H2biim)3]2(SiF6)(BF4)2 · 6EtOH was isolated. The [Cd(H2biim)3]2+ and ions define an extended hydrogen-bonded network, in which ions surrounded by disordered ethanol molecules occupy large cavities. The two free N-H groups provide H2biim with a unique ability to form hydrogen bonds and their interactions with counter anions or other acceptors play a determining role in controlling molecular packing. The IR spectra of all compounds are discussed.  相似文献   

14.
Three novel coordination complexes [Mn(tpha)(phen)]n (1); [Mn(na)2(H2O)2]n (2); {[Mn(phen)2(OH)Cl] · Cl · (OH) · (C9H11NO2) · 2H2O} (3) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction (H2tpha = terephthalic acid, Hna = nicotinic acid, phen = 1,10-phenanthroline). The tpha groups in complex 1 bridge the Mn(II) ions to an infinite 3D framework. Complex 2 exhibits a 2D network structure in which the Mn(II) ions are linked by nicotinic groups. Complex 3 is connected to a 2D coordination supramolecule by hydrogen bonds. The results of surface photovoltage spectra (SPS) of complexes 1-3 indicate that they all exhibit positive surface photovoltage (SPV) responses in the range of 300-800 nm. However, the intensity, position and numbers of SPV responses are obviously different. The distinctions can be mainly attributed to their structures, valences and coordination environments of the manganese ions in the three complexes. Moreover the external field induced surface photovoltage spectra (FISPS) of the three complexes have been measured.  相似文献   

15.
Nine triorganotin(IV) complexes of the type R3SnL (L = L1 R = Me 1, Ph 2, PhCH23; L = L2 R = Me 4, Ph 5, PhCH26; L = L2 R = Me 7, Ph 8, PhCH29) have been obtained by reaction of new Schiff base HL1, HL2 or HL3 with triorganotin(IV) chloride in the presence of sodium ethoxide. All the complexes 1-9 were characterized by elemental, IR and NMR spectra analyses. Except for complexes 3, 4, 6, 9, the others were also characterized by X-ray crystallography diffraction analyses, which revealed that complexes 1, 2, 5, 7, 8 were four coordinated and displayed a capped tetrahedron.  相似文献   

16.
Two NNS tridentate Schiff base ligands of 2-benzoylpyridine S-methyldithiocarbazate (HL1) and 2-benzoylpyridine S-phenyldithiocarbazate (HL2) and their transition metal complexes [Cu2(L1)2(CH3COO)](ClO4) (1), [Zn2(L1)2(ClO4)2] (2), [Zn(L2)2](3) have been prepared and characterized by elemental analysis, IR, MS, NMR and single-crystal X-ray diffraction studies. In the solid state, each of two Schiff bases remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. Under similar prepared conditions, three new complexes showed distinctly different coordination modes depending on their coordinating preferences. Each copper atom in S-bridged dinuclear complex [Cu2(L1)2(CH3COO)](ClO4) (1) is surrounded by five donor atoms in a square-pyramidal fashion (4 + 1). [Zn2(L1)2(ClO4)2] (2) is a dimer in which each zinc atom adopts a seven-coordinate distorted pentagonal bipyramidal geometry, while mononuclear [Zn(L2)2] (3) has octahedral coordination geometry. Biological studies, carried out in vitro against selected bacteria, fungi, and K562 leukaemia cell line, respectively, have shown that different substituted groups attached at the dithiocarbazate moieties and metals showed distinctive differences in the biological property. Zinc(II) complexes 2 and 3 could distinguish K562 leukaemia cell line from normal hepatocyte QSG7701 cell line. Effect of the title compounds on Mitochondria membrane potential (MMP) and PI-associated fluorescence intensity in K562 leukaemia cell line are also studied. The title compounds may exert their cytotoxicity activity via induced loss of MMP.  相似文献   

17.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

18.
Binuclear titanocene complexes [Cp2Ti(tcm)]2O (4), [Cp2Ti(dca)]2O (5) and [Cp2Ti(dcnm)]2O (6) (tcm = tricyanomethanide, dca = dicyanamide and dcnm = dicyanonitrosomethanide) were synthesized in moderate yields by the reaction of Cp2TiCl2 (1) with respective alkali metal pseudohalide salts in the aqueous solution. When the reaction was carried out in dry organic solvents, mononuclear compounds Cp2Ti(tcm)2 (2) and Cp2Ti(dca)2 (3) were isolated. Preparation of dipseudohalide complex Cp2Ti(dcnm)2 by this manner was unsuccessful due to decomposition of dcnm ligand resulting in formation of oxygen-bridged compound 6. All prepared compounds were characterized by elemental analysis, NMR, Raman, infrared and UV-Vis spectroscopy. Molecular structures of 2, 4 and 6 (two polymorphs) have been determined by single-crystal X-ray diffraction analysis.  相似文献   

19.
The reaction of zinc(II) chloride, cadmium(II) chloride and bromide with 3-thiophene aldehyde thiosemicarbazone leads to the formation of a series of new complexes. They have been characterized by spectroscopic studies: infrared, 1H NMR, and electronic spectra. The crystal structures of the compound [ZnCl2(3TTSCH)2] and [CdBr2(3TTSCH)2] have been determined by X-ray diffraction methods. For the complexes [ZnCl2(3TTSCH)2] and [CdBr2(3TTSCH)2], the central ion is coordinated through the sulfur, and for the complexes [CdCl2(3TTSCH)], [CdBr2(3TTSCH)] the ion is coordinated through the sulfur as well as azomethine nitrogen atom of the thiosemicarbazone. In addition, fungistatic and bacteriostatic activities of both ligand and complexes have been evaluated. Cadmium(II) complexes have shown the most significant activities.  相似文献   

20.
Two tetra-nuclear Ag(I) complexes with styrene-functionalized N-heterocyclic carbene [AgL2]2[Ag2X4] (L = 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene, X = Cl, 2a; X = I, 2b) were prepared by the reactions between the corresponding imidazolium salts with Ag2O. The reaction mixture was further treated with AgBF4 to give a mononuclear ion-pair complex [AgL2][BF4] (3). The molecular structures of these new Ag(I) complexes have been determined by X-ray diffraction analyses. 2a and 2b consist of two [Ag(L)2]+ fragments with the central [Ag2X4]2− anion held together by the close Ag(I)-Ag(I) interactions. Complex 3 is a mononuclear ion-pair complex with a linear bi-coordinate Ag fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号