首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control.  相似文献   

2.
In order to determine the type of somatosensory information for postural control that is most affected by neuropathy, we compared the relative effects of three methods of sway-referencing the surface in a group of subjects with profound loss of somatosensory function associated with sensory polyneuropathy from diabetes with age-matched control subjects. Sway-referencing disrupted somatosensory feedback for postural control by servo-controlling the dorsi- and plantar-flexion rotation of the support surface in proportion to anterior-posterior excursion of (1) ankle angle, (2) center of body mass (CoM) angle or (3) filtered center of pressure (CoP). Postural sway in subjects with somatosensory loss was significantly larger than normal on a firm surface but not on the sway-referenced surfaces, suggesting that sway-referencing disrupts somatosensory information for postural control already disrupted by neuropathy. Control subjects standing on any sway-referenced surface swayed significantly more than neuropathy subjects who stood on a firm surface, suggesting that sway-referencing disrupts more somatosensory information than disrupted by severe neuropathy. CoP sway-referencing was less sensitive than ankle or CoM sway-referencing for distinguishing postural sway in subjects with somatosensory loss from age-matched control subjects. Given that filtered CoP sway-referencing disrupts the ability to utilize somatosensory information related to surface reactive force to a greater extent than the other two methods of sway-referencing, then these results support the hypothesis that subjects with diabetic peripheral neuropathy have lost more CoP information, than ankle or CoM angle information, for controlling postural sway in stance.  相似文献   

3.
In order to determine the type of somatosensory information for postural control that is most affected by neuropathy, we compared the relative effects of three methods of sway-referencing the surface in a group of subjects with profound loss of somatosensory function associated with sensory polyneuropathy from diabetes with age-matched control subjects. Sway-referencing disrupted somatosensory feedback for postural control by servo-controlling the dorsi- and plantar-flexion rotation of the support surface in proportion to anterior-posterior excursion of (1) ankle angle, (2) center of body mass (CoM) angle or (3) filtered center of pressure (CoP). Postural sway in subjects with somatosensory loss was significantly larger than normal on a firm surface but not on the sway-referenced surfaces, suggesting that sway-referencing disrupts somatosensory information for postural control already disrupted by neuropathy. Control subjects standing on any sway-referenced surface swayed significantly more than neuropathy subjects who stood on a firm surface, suggesting that sway-referencing disrupts more somatosensory information than disrupted by severe neuropathy. CoP sway-referencing was less sensitive than ankle or CoM sway-referencing for distinguishing postural sway in subjects with somatosensory loss from age-matched control subjects. Given that filtered CoP sway-referencing disrupts the ability to utilize somatosensory information related to surface reactive force to a greater extent than the other two methods of sway-referencing, then these results support the hypothesis that subjects with diabetic peripheral neuropathy have lost more CoP information, than ankle or CoM angle information, for controlling postural sway in stance.  相似文献   

4.
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing.  相似文献   

5.
Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants'' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.  相似文献   

6.
Modern methods of assessing standing balance such as wavelet and entropy analysis could provide insight into postural control mechanisms in clinical populations. The aim of this study was to examine what effect anterior cruciate ligament reconstruction (ACLR) has on traditional and modern measures of balance. Ninety subjects, 45 who had undergone ACLR and 45 matched controls, performed single leg static standing balance tests on their surgical or matched limb on a Nintendo Wii Balance Board. Data were analysed in the anterior–posterior axis of movement, which is known to be affected by ACLR. The traditional measures of path velocity, amplitude and standard deviation were calculated in this plane. Additionally, sample entropy and discrete wavelet transform derived assessment of path velocity in four distinct frequency bands related to (1) spinal reflexive loops and muscle activity, (2) cerebellar, (3) vestibular, and (4) visual mechanisms of postural control were derived. The ACLR group had significantly increased values in all traditional measures and all four frequency bands. No significant difference was observed for sample entropy. This indicated that whilst postural sway was amplified in the ACLR group, the overall mechanism used by the patient group to maintain balance was similar to that of the control group. In conclusion, modern methods of signal analysis may provide additional insight into standing balance mechanisms in clinical populations. Future research is required to determine if these results provide important and unique information which is of benefit to clinicians.  相似文献   

7.
8.
Effects of contact of a hand or fingertip with an additional support on human balance on stationary and movable surfaces were studied. Contact with a fixed or free vertical bar was established either by a handgrip or a touch with the tip of the index finger. Amplitudes and lengths of posturograms under conditions of free standing and standing with additional proprioceptive information were compared. It was shown that contact with an additional support during standing on a stationary surface with closed eyes decreases the amplitude of sagittal sway of the center of gravity by 1.3- to 2-fold as compared to standing without such a contact, independently of the contact type and the degree of bar mobility. During standing on a movable platform (which resulted in a three- to fourfold increase in the amplitude of sway as compared to standing on the floor), the grasp of the fixed bar decreased the amplitude of sagittal sway by five- to ninefold and the touch led to a three- to fourfold decrease. The sway of the common center of gravity upon contact with the movable bar during standing on the unstable platform was reduced by half on both planes independently of the contact type. The results suggest that sensory information from receptors of the hand contacting with a stationary or movable support substantially supplements the current neural representation of the spatial position of the body, correcting and changing the direction of postural reactions and the perception of the location of external objects, which ensures the ability of the CNS to maintain the balance under complicated conditions and to provide highly stable standing.  相似文献   

9.
Balance function is dramatically deteriorated after exposure to microgravity. The purpose of the present study was to investigate the role and the contribution of different gravity sensory systems to the development of balance impairment after long-term spaceflights. Postural perturbations (pushes to the chest) of the threshold, medium, and sub-maximal intensities were produced in eight cosmonauts before, and on the day 3, 7, and 11 following spaceflight. Postural corrective responses were analyzed by anterior-posterior body sway fluctuation and electromyographic activity of leg muscles. The characteristics of the postural corrective responses changed significantly on the day 3 following spaceflight: the amplitude of posterior sway caused by perturbation of threshold intensity was increased reaching 135% ofpreflight value; the corrective responses lasted more than 6 s in 50% of all trials, while it did not last more than 4 s in 96% before spaceflight. The EMG responses were characterized by increased contribution of medium- and long-latency reactions. On the day 11 following spaceflight, most of the characteristics of postural corrective responses were close to preflight values. We assumed that the balance alterations after spaceflight are caused by changes in weightlessness of functions of two main gravity sensory systems, namely, weight-bearing and vestibular one. The deficit of weight-bearing afferentation triggers a decline of the extensors' muscle tone, while changes of vestibular function cause a decline of accuracy of postural corrections.  相似文献   

10.
Balance function is dramatically deteriorated after exposure to microgravity. The purpose of the present study was to investigate the role and the contribution of different gravity sensory systems to the development of balance impairment after long-term spaceflights. Postural perturbations (pushes to the chest) of the threshold, medium, and sub-maximal intensities were produced in eight cosmonauts before, and on the day 3, 7, and 11 following spaceflight. Postural corrective responses were analyzed by anterior-posterior body sway fluctuation and electromyographic activity of leg muscles. The characteristics of the postural corrective responses changed significantly on the day 3 following spaceflight: the amplitude of posterior sway caused by perturbation of threshold intensity was increased reaching 135% of preflight value; the corrective responses lasted more than 6 s in 50% of all trials, while it did not last more than 4 s in 96% before spaceflight. The EMG responses were characterized by increased contribution of medium- and long-latency reactions. On the day 11 following spaceflight, most of the characteristics of postural corrective responses were close to preflight values. We assumed that the balance alterations after spaceflight are caused by changes in weightlessness of functions of two main gravity sensory systems, namely, weight-bearing and vestibular one. The deficit of weight-bearing afferentation triggers a decline of the extensors’ muscle tone, while changes of vestibular function cause a decline of accuracy of postural corrections.  相似文献   

11.
Upright stance on a balance board is a skill requiring complex rearrangement of the postural control. Despite the large use of these boards in training the standing posture, a comprehensive analysis of the learning process underlying the control of these devices is lacking. In this paper learning to maintain a stable stance on a multiaxial oscillating board was studied by analyzing performance changes over short and long periods. Healthy participants were asked to keep the board orientation as horizontal as possible for 20 sec, performing two sessions of 8 trials separated by 15-min pause. Memory consolidation was tested one week later. Amplitude and variability of the oscillations around horizontal plane and area and sway path of the board displacement decreased rapidly over the first session. The performance was stable during the second session, and retained after 1 week. A similar behavior was observed in the anterior-posterior and medial-lateral directions for amplitude and variability parameters, with less stable balance in the anterior-posterior direction. Approximate entropy and mean power frequency, assessing temporal dynamics and frequency content of oscillations, changed only in the anterior-posterior direction during the retention test. Overall, the ability to stand on a balance board is rapidly acquired, and retained for long time. The asymmetric stability between anterior-posterior and medial-lateral directions replicates a structure observed in other standing stances, suggesting a possible transfer from previous postural experiences. Conversely, changes in the temporal dynamics and the frequency content could be associated with new postural strategies developed later during memory consolidation.  相似文献   

12.
The study investigated the effects of an unilateral ankle muscle fatigue onto independent postural control parameters including the trajectories of the estimated resultant CoP (CoPres) and his components: the centre of gravity (CG) and CoP–CG trajectories.Nine healthy men realized series of 10 toe-lift immediately followed by 10 knee flexions until exhaustion with one (Ex) leg. Maximal isometric voluntary contractions, postural sway measures of each leg, and muscular activities of the ankle muscles were recorded before and immediately after the fatiguing exercise.As expected, the latter induced a decrease in maximal voluntary peak force associated with a greater variability of the relative contribution of each leg on the CoPres, enhanced all postural parameters of the non-exercised leg. A significant decreased of the tibialis anterior EMG activity for the Ex leg and an increased one for the NoEx leg. Finally, following unilateral fatigue, the body sway destabilisation seemed to occur only along the medio-lateral (ML) axis.The enhanced and greater variability of the variance along ML axis might be explained by the recourse at the loading–unloading strategy choice and suggests a central attempt to compensate for pain sensation.  相似文献   

13.
Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to – or is compensated by – other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors’ activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors’ activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles’ activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.  相似文献   

14.
How sensory organization for postural control matures in children is not clear at this time. The present study examined, in children aged 7 to 11 and in adults, the postural control modifications in quiet standing when somatosensory inputs from the ankle were disturbed. Since the reweighting of sensory inputs is not mature before 10, we hypothesized that postural stability was more affected in children than in adults when somatosensory inputs were altered and that this postural instability decreased as age increased during childhood. 37 children aged 7 to 11 years and 9 adults participated in the experiments. The postural task was a semi-tandem position with the right foot in front of the left one. Postural performance was measured by means of a force platform. Two experimental conditions were presented to the participants to maintain quiet standing: With or without altered somatosensory inputs (i.e., with or without ankles vibration). Results showed that postural stability--and thus how the reweighting process of the visual/somatosensory inputs matured--increased non-monotonically between 7 years of age and adult age: There was a linear improvement of postural stability from 7 to 10, followed by a more steady behaviour between 10 and 11 and then postural stability increased to reach the adults' level of performance.  相似文献   

15.

Objective

Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.

Method

Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.

Results

Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.

Conclusions

Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions.  相似文献   

16.
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.  相似文献   

17.
Textured insoles may enhance sensory input on the plantar surfaces of the feet, thereby influencing neuromuscular function. The aim of this study was to investigate whether textured surfaces alter postural stability and lower limb muscle activity during quiet bipedal standing balance with eyes open. Anterior–posterior (AP) and mediolateral (ML) sway variables and the intensity of electromyographic (EMG) activity in eight dominant lower limb muscles were collected synchronously over 30 s in 24 young adults under three randomised conditions: control surface (C), texture 1 (T1) and texture 2 (T2). Repeated measures ANOVA showed that the textured surfaces did not significantly affect AP or ML postural sway in comparison to the control condition (p > 0.05). Neither did the textured surfaces significantly alter EMG activity in the lower limbs (p > 0.05). Under the specific conditions of this study, texture did not affect either postural sway or lower limb muscle activity in static bipedal standing. The results of this study point to three areas of further work including the effect of textured surfaces on postural stability and lower limb muscle activity: (i) in young healthy adults under more vigorous dynamic balance tests, (ii) post-fatigue, and (iii) in older adults presenting age-related deterioration.  相似文献   

18.
Postural responses to challenging situations were studied in older adults as they stood on a foam surface. The experiment was designed to assess the relative contributions made by visual and somatosensory information to the correction of postural sway. Twenty-four subjects, aged 56-83, stood for 20 s on a 1) firm or 2) foam surface with 1) the eyes open or 2) the eyes closed. Centre-of-pressure trajectories under the subjects' feet were measured by using a force platform. A repeated-measure two-way MANCOVA (two surfaces vs. two vision conditions) showed a significant main effect for the surface, but not for the vision. No covariate effect for age was found. Anterior-posterior sway increased in the subjects who were merely standing on the foam surface independent of the vision condition. Medial-lateral sway dramatically increased if the subjects stood on the foam surface with their eyes closed, but not if they stood with their eyes open. These results indicate that older adults rely more on visual information to correct mediolateral postural sway. It appears that the deterioration in visual acuity that occurs with aging may increase the risk of sideway falls, particularly in challenging situations, e.g., when standing on irregular or soft surfaces.  相似文献   

19.
Dyslexic children, besides difficulties in mastering literacy, also show poor postural control that might be related to how sensory cues coming from different sensory channels are integrated into proper motor activity. Therefore, the aim of this study was to examine the relationship between sensory information and body sway, with visual and somatosensory information manipulated independent and concurrently, in dyslexic children. Thirty dyslexic and 30 non-dyslexic children were asked to stand as still as possible inside of a moving room either with eyes closed or open and either lightly touching a moveable surface or not for 60 seconds under five experimental conditions: (1) no vision and no touch; (2) moving room; (3) moving bar; (4) moving room and stationary touch; and (5) stationary room and moving bar. Body sway magnitude and the relationship between room/bar movement and body sway were examined. Results showed that dyslexic children swayed more than non-dyslexic children in all sensory condition. Moreover, in those trials with conflicting vision and touch manipulation, dyslexic children swayed less coherent with the stimulus manipulation compared to non-dyslexic children. Finally, dyslexic children showed higher body sway variability and applied higher force while touching the bar compared to non-dyslexic children. Based upon these results, we can suggest that dyslexic children are able to use visual and somatosensory information to control their posture and use the same underlying neural control processes as non-dyslexic children. However, dyslexic children show poorer performance and more variability while relating visual and somatosensory information and motor action even during a task that does not require an active cognitive and motor involvement. Further, in sensory conflict conditions, dyslexic children showed less coherent and more variable body sway. These results suggest that dyslexic children have difficulties in multisensory integration because they may suffer from integrating sensory cues coming from multiple sources.  相似文献   

20.

Objective

The objective was to investigate how postural control in knee osteoarthritis (KOA) patients, with different structural severities and pain levels, is reorganized under different sensory conditions.

Methods

Forty-two obese patients (BMI range from 30.1 to 48.7 kg*m−2, age range from 50 to 74 years) with KOA were evaluated. One minute of quiet standing was assessed on a force platform during 4 different sensory conditions, applied 3 times at random: Eyes open (EO) and eyes closed (EC) standing on firm and soft (foam) surfaces (EO-soft and EC-soft). Centre of pressure (Cop) standard deviation, speed, range and Cop mean position in both directions (anterior-posterior and medial-lateral) were extracted from the force platform data. Structural disease severity was assessed from semiflexed standing radiographs and graded by the Kellgren and Lawrence (KL) score. Pain intensity immediately before the measurements was assessed by numeric rating scale (range: 0–10).

Results

The patients were divided into “less severe” (KL 1 and 2, n = 24) and “severe” (KL>2, n = 18) group. The CoP range in the medial-lateral direction was larger in the severe group when compared with the less severe group during EC-soft condition (P<0.01). Positive correlation between pain intensity and postural sway (range in medial-lateral direction) was found during EC condition, indicating that the higher the pain intensity, the less effective is the postural control applied to restore an equilibrium position while standing without visual information.

Conclusion

The results support that: (i) the postural reorganization under manipulation of the different sensory information is worse in obese KOA patients with severe degeneration and/or high pain intensity when compared with less impaired patients, and (ii) higher pain intensity is related to worse body balance in obese KOA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号