首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current methods for measuring in vivo 3D muscle-tendon moment arms generally rely on the acquisition of magnetic resonance imaging (MRI) scans at multiple joint angles. However, for patients with musculoskeletal pathologies such as fixed contractures, moving a joint through its full range of motion is not always feasible. The purpose of this research was to develop a simple, but reliable in vivo 3D Achilles tendon moment arm (ATMA) technique from a single static MRI scan. To accomplish this, for nine healthy adults (5 males, 4 females), the geometry of a cylinder was fit to the 3D form of the talus dome, which was used to estimate the talocrural flexion/extension axis, and a fifth-order polynomial fit to the line of action of the Achilles tendon. The single static scan in vivo 3D ATMA estimates were compared to estimates obtained from the same subjects at the same ankle joint angles using a previously validated 3D dynamic MRI based in vivo ATMA measurement technique. The ATMA estimates from the single scan in vivo 3D method (52.5 mm ± 5.6) were in excellent agreement (ICC = 0.912) to the validated in vivo 3D method (51.5 mm ± 5.1). These data show reliable in vivo 3D ATMA can be obtained from a single MRI scan for healthy adult populations. The single scan, in vivo 3D ATMA technique provides researchers with a simple, but reliable method for obtaining subject-specific ATMAs for musculoskeletal modelling purposes.  相似文献   

2.
When studying muscle and whole-body function in children with cerebral palsy (CP), knowledge about both internal and external moment arms is essential since they determine the mechanical advantage of a muscle over an external force. Here we asked if Achilles tendon moment arm (MAAT) length is different in children with CP and age-matched typically developing (TD) children, and if MAAT can be predicted from anthropometric measurements. Sixteen children with CP (age: 10y 7 m ± 3y, 7 hemiplegia, 12 diplegia, GMFCS level: I (11) and II (8)) and twenty TD children (age: 10y 6 m ± 3y) participated in this case-control study. MAAT was calculated at 20° plantarflexion by differentiating calcaneus displacement with respect to ankle angle. Seven anthropometric variables were measured and related to MAAT. We found normalized MAAT to be 15% (∼7 mm) smaller in children with CP compared to TD children (p = 0.003). MAAT could be predicted by all anthropometric measurements with tibia length explaining 79% and 72% of variance in children with CP and TD children, respectively. Our findings have important implications for clinical decision making since MAAT influences the mechanical advantage about the ankle, which contributes to movement function and is manipulated surgically.  相似文献   

3.
Cerebral palsy (CP) is a neurological disorder that results in life-long mobility impairments. Musculoskeletal models used to investigate mobility deficits for children with CP often lack subject-specific characteristics such as altered muscle strength, despite a high prevalence of muscle weakness in this population. We hypothesized that incorporating subject-specific strength scaling within musculoskeletal models of children with CP would improve accuracy of muscle excitation predictions in walking simulations. Ten children (13.5 ± 3.3 years; GMFCS level II) with spastic CP participated in a gait analysis session where lower-limb kinematics, ground reaction forces, and bilateral electromyography (EMG) of five lower-limb muscles were collected. Isometric strength was measured for each child using handheld dynamometry. Three musculoskeletal models were generated for each child including a ‘Default’ model with the generic musculoskeletal model’s muscle strength, a ‘Uniform’ model with muscle strength scaled allometrically, and a ‘Custom’ model with muscle strength scaled based on handheld dynamometry strength measures. Muscle-driven gait simulations were generated using each model for each child. Simulation accuracy was evaluated by comparing predicted muscle excitations and measured EMG signals, both in the duration of muscle activity and the root-mean-square difference (RMSD) between signals. Improved agreement with EMG were found in both the ‘Custom’ and ‘Uniform’ models compared to the ‘Default’ model indicated by improvement in RMSD summed across all muscles, as well as RMSD and duration of activity for individual muscles. Incorporating strength scaling into musculoskeletal models can improve the accuracy of walking simulations for children with CP.  相似文献   

4.
Neuro-musculoskeletal modelling can provide insight into the aberrant muscle function during walking in those suffering cerebral palsy (CP). However, such modelling employs optimization to estimate muscle activation that may not account for disturbed motor control and muscle weakness in CP. This study evaluated different forms of neuro-musculoskeletal model personalization and optimization to estimate musculotendon forces during gait of nine children with CP (GMFCS I-II) and nine typically developing (TD) children. Data collection included 3D-kinematics, ground reaction forces, and electromyography (EMG) of eight lower limb muscles. Four different optimization methods estimated muscle activation and musculotendon forces of a scaled-generic musculoskeletal model for each child walking, i.e. (i) static optimization that minimized summed-excitation squared; (ii) static optimization with maximum isometric muscle forces scaled to body mass; (iii) an EMG-assisted approach using optimization to minimize summed-excitation squared while reducing tracking errors of experimental EMG-linear envelopes and joint moments; and (iv) EMG-assisted with musculotendon model parameters first personalized by calibration. Both static optimization approaches showed a relatively low model performance compared to EMG envelopes. EMG-assisted approaches performed much better, especially in CP, with only a minor mismatch in joint moments. Calibration did not affect model performance significantly, however it did affect musculotendon forces, especially in CP. A model more consistent with experimental measures is more likely to yield more physiologically representative results. Therefore, this study highlights the importance of calibrated EMG-assisted modelling when estimating musculotendon forces in TD children and even more so in children with CP.  相似文献   

5.
The use of exoskeletons as an aid for people with musculoskeletal disorder is the subject to an increasing interest in the research community. These devices are expected to meet the specific needs of users, such as children with cerebral palsy (CP) who are considered a significant population in pediatric rehabilitation. Although these exoskeletons should be designed to ease the movement of people with physical shortcoming, their design is generally based on data obtained from healthy adults, which leads to oversized components that are inadequate to the targeted users. Consequently, the objective of this study is to custom-size the lower limb exoskeleton actuators based on dynamic modeling of the human body for children with CP on the basis of hip, knee, and ankle joint kinematics and dynamics of human body during gait. For this purpose, a multibody modeling of the human body of 3 typically developed children (TD) and 3 children with CP is used. The results show significant differences in gait patterns especially in knee and ankle with respectively 0.39 and ?0.33 (Nm/kg) maximum torque differences between TD children and children with CP. This study provides the recommendations to support the design of actuators to normalize the movement of children with CP.  相似文献   

6.
In this study, the relationship between musculoskeletal architecture of the lateral gastrocnemius muscle and gait velocity in elderly individuals was investigated using ultrasonography and standardized tests of physical performance in 20 older adult males. Musculoskeletal architecture parameters included moment arm, fascicle length, pennation angle, and muscle thickness. The Six Minute Walk Test (6MIN) and Four Metre Walk Velocity Test (4METRE) were used to determine preferred and maximum gait velocity, respectively. Only weak correlations were found for all 20 subjects taken together. After subjects were separated into faster and slower subgroups by preferred velocity using cluster analysis; however, a strong correlation was found between plantarflexion moment arm and 6MIN velocity in the slower group (R(2)=0.669, p=0.004). Examination of subgroup differences revealed that the slow subgroup was significantly older than the fast subgroup (p=0.034), and had average body mass (p=0.021) and body mass index (p=0.011) that were significantly greater. The strength of the correlation between plantarflexion moment arm and 6MIN velocity found for slower subjects is much greater than those previously reported for correlations between ankle strength or power and walking velocity. Further investigation is necessary to determine if a link exists between plantarflexor moment arm and gait velocity in older and heavier adults.  相似文献   

7.

Neuromusculoskeletal models are a powerful tool to investigate the internal biomechanics of an individual. However, commonly used neuromusculoskeletal models are generated via linear scaling of generic templates derived from elderly adult anatomies and poorly represent a child, let alone children with a neuromuscular disorder whose musculoskeletal structures and muscle activation patterns are profoundly altered. Model personalization can capture abnormalities and appropriately describe the underlying (altered) biomechanics of an individual. In this work, we explored the effect of six different levels of neuromusculoskeletal model personalization on estimates of muscle forces and knee joint contact forces to tease out the importance of model personalization for normal and abnormal musculoskeletal structures and muscle activation patterns. For six children, with and without cerebral palsy, generic scaled models were developed and progressively personalized by (1) tuning and calibrating musculotendon units’ parameters, (2) implementing an electromyogram-assisted approach to synthesize muscle activations, and (3) replacing generic anatomies with image-based bony geometries, and physiologically and physically plausible muscle kinematics. Biomechanical simulations of gait were performed in the OpenSim and CEINMS software on ten overground walking trials per participant. A mixed-ANOVA test, with Bonferroni corrections, was conducted to compare all models’ estimates. The model with the highest level of personalization produced the most physiologically plausible estimates. Model personalization is crucial to produce physiologically plausible estimates of internal biomechanical quantities. In particular, personalization of musculoskeletal anatomy and muscle activation patterns had the largest effect overall. Increased research efforts are needed to ease the creation of personalized neuromusculoskeletal models.

  相似文献   

8.
Lower limb (LL) muscle morphology and growth are altered in children with cerebral palsy (CP). Muscle alterations differ with age and with severity of motor impairment, classified according to the gross motor classification system (GMFCS). Muscle alterations differ also with orthopedic intervention, frequently performed at the level of the shank muscles since an early age, such as the gastrocnemius. The aim was to investigate the alterations of treatment-naïve pelvis and thigh muscle lengths and volumes in children with GMFCS levels I and II, of varying ages.17 children with CP (GMFCS I: N = 9, II: N = 8, age: 11.7 ± 4 years), age-matched to 17 typically developing (TD) children, underwent MRI of the LL. Three-dimensional reconstructions of the muscles were performed bilaterally. Muscle volumes and lengths were calculated in 3D and compared between groups. Linear regression between muscle volumes and age were computed.Adductor-brevis and gracilis lengths, as well as rectus-femoris volume, were decreased in GMFCS I compared to TD (p < 0.05). Almost all the reconstructed muscle volumes and lengths were found to be altered in GMFCS II compared to TD and GMFCS I. All muscle volumes showed significant increase with age in TD and GMFCS I (R2 range: 0.3–0.9, p < 0.05). Rectus-femoris, hamstrings and adductor-longus showed reduced increase in the muscle volume with age in GMFCS II when compared to TD and GMFCS I.Alterations of treatment-naïve pelvis and thigh muscle volumes and lengths, as well as muscle growth, seem to increase with the severity of motor impairment in ambulant children with CP.  相似文献   

9.
The objective of the study was to determine whether children with cerebral palsy (CP) have abnormal bilateral masseter and temporal muscle activation during mastication. The muscular activity of 32 children aged between 7 and 13 years was assessed during the task of non-habitual mastication by means of surface electromyograms. During non-habitual mastication, the amplitude of all assessed muscles in the inactive period and the amplitude of the Right Masseter and Left Temporal muscles in the active period of children with CP was greater (p < 0.05) in relation to the group of children with Typical Development (TD). Considering each muscle individually, only the duration of the active period of Right Masseter and Right Temporal muscles in children with CP was lower (p < 0.05) than in the TD children. Considering the four analyzed muscles, the duration of time of general active period, when at least one muscle should be activated, was higher in children with CP (p < 0.05) than in children with TD showing greater time variation in inactivation (p < 0.05). The higher muscle activity during the phases of the masticatory cycle, with longer duration of the active period and with greater variability between the muscles to inhibit this activity show greater difficulty in coordinating the muscles of mastication in children with CP compared to children with TD.  相似文献   

10.

Introduction

Variability in task output is a ubiquitous characteristic that results from non-continuous motor neuron firing during muscular force generation. However, variability can also be attributed to errors in control and coordination of the motor neurons themselves in diseases such as cerebral palsy (CP). Selective dorsal rhizotomy (SDR), a neurosurgical approach to sever sensory nerve roots, is thought to decrease redundant or excessive afferent signalling to intramedullary neurons. In addition to its demonstrated ability to reduce muscular spasticity, we hypothesised that SDR is able to decrease variability during gait, the most frequent functional motor activity of daily living.

Methods

Twelve CP children (aged 6.1±1.3yrs), who underwent SDR and performed gait analysis pre- and 12 months postoperatively, were compared to a control group of eleven typically developing (TD) children. Coefficients of variability as well as mean values were analysed for: temporal variables of gait, spatial parameters and velocity.

Results

Gait parameters of cadence (p = 0.006) and foot progression angle at mid-stance (p = 0.041) changed significantly from pre- to post-SDR. The variability of every temporal parameter was significantly reduced after SDR (p = 0.003–0.049), while it remained generally unchanged for the spatial parameters. Only a small change in gait velocity was observed, but variability in cadence was significantly reduced after SDR (p = 0.015). Almost all parameters changed with a tendency towards normal, but differences between TD and CP children remained in all parameters.

Discussion

The results confirm that SDR improves functional gait performance in children with CP. However, almost exclusively, parameters of temporal variability were significantly improved, leading to the conjecture that temporal variability and spatial variability may be governed independently by the motor cortex. As a result, temporal parameters of task performance may be more vulnerable to disruption, but also more responsive to treatment success of interventions such as SDR.  相似文献   

11.
Representation of realistic muscle geometries is needed for systematic biomechanical simulation of musculoskeletal systems. Most of the previous musculoskeletal models are based on multibody dynamics simulation with muscles simplified as one-dimensional (1D) line-segments without accounting for the large muscle attachment areas, spatial fibre alignment within muscles and contact and wrapping between muscles and surrounding tissues. In previous musculoskeletal models with three-dimensional (3D) muscles, contractions of muscles were among the inputs rather than calculated, which hampers the predictive capability of these models. To address these issues, a finite element musculoskeletal model with the ability to predict contractions of 3D muscles was developed. Muscles with realistic 3D geometry, spatial muscle fibre alignment and muscle-muscle and muscle-bone interactions were accounted for. Active contractile stresses of the 3D muscles were determined through an efficient optimization approach based on the measured kinematics of the lower extremity and ground force during gait. This model also provided stresses and strains of muscles and contact mechanics of the muscle-muscle and muscle-bone interactions. The total contact force of the knee predicted by the model corresponded well to the in vivo measurement. Contact and wrapping between muscles and surrounding tissues were evident, demonstrating the need to consider 3D contact models of muscles. This modelling framework serves as the methodological basis for developing musculoskeletal modelling systems in finite element method incorporating 3D deformable contact models of muscles, joints, ligaments and bones.  相似文献   

12.
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18 ± 0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5–20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2 = 0.13–0.73), these variables were only weakly correlated with oxygen consumption (r2 = 0.02–0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual’s energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.  相似文献   

13.
Poor control of postural muscles is a primary impairment in cerebral palsy (CP), yet core trunk and hip muscle activity has not been thoroughly investigated. Frequency analysis of electromyographic (EMG) signals provides insight about the intensity and pattern of muscle activation, correlates with functional measures in CP, and is sensitive to change after intervention. The objective of this study was to investigate differences in trunk and hip muscle activation frequency in children with CP compared to children with similar amounts of walking experience and typical development (TD). EMG data from 31 children (15 with CP, 16 with TD) were recorded from 16 trunk and hip muscles bilaterally. A time–frequency pattern was generated using the continuous wavelet transform and instantaneous mean frequency (IMNF) was calculated at each interval of the gait cycle. Functional principal component analysis (PCA) revealed that IMNF was significantly higher in the CP group throughout the gait cycle for all muscles. Additionally, stride-to-stride variability was higher in the CP group. This evidence demonstrated altered patterns of trunk and hip muscle activation in CP, including increased rates of motor unit firing, increased number of recruited motor units, and/or decreased synchrony of motor units. These altered muscle activation patterns likely contribute to muscle fatigue and decreased biomechanical efficiency in children with CP.  相似文献   

14.
Hip loading affects the development of hip osteoarthritis, bone remodelling and osseointegration of implants. In this study, we analyzed the effect of subject-specific modelling of hip geometry and hip joint centre (HJC) location on the quantification of hip joint moments, muscle moments and hip contact forces during gait, using musculoskeletal modelling, inverse dynamic analysis and static optimization. For 10 subjects, hip joint moments, muscle moments and hip loading in terms of magnitude and orientation were quantified using three different model types, each including a different amount of subject-specific detail: (1) a generic scaled musculoskeletal model, (2) a generic scaled musculoskeletal model with subject-specific hip geometry (femoral anteversion, neck-length and neck-shaft angle) and (3) a generic scaled musculoskeletal model with subject-specific hip geometry including HJC location. Subject-specific geometry and HJC location were derived from CT. Significant differences were found between the three model types in HJC location, hip flexion–extension moment and inclination angle of the total contact force in the frontal plane. No model agreement was found between the three model types for the calculation of contact forces in terms of magnitude and orientations, and muscle moments. Therefore, we suggest that personalized models with individualized hip joint geometry and HJC location should be used for the quantification of hip loading. For biomechanical analyses aiming to understand modified hip joint loading, and planning hip surgery in patients with osteoarthritis, the amount of subject-specific detail, related to bone geometry and joint centre location in the musculoskeletal models used, needs to be considered.  相似文献   

15.
In biomechanics, musculoskeletal models are typically redundant. This situation is referred to as the distribution problem. Often, static, non-linear optimisation methods of the form “min: φ(f) subject to mechanical and muscular constraints” have been used to extract a unique set of muscle forces. Here, we present a method for validating this class of non-linear optimisation approaches where the homogeneous cost function, φ(f), is used to solve the distribution problem. We show that the predicted muscle forces for different loading conditions are scaled versions of each other if the joint loading conditions are just scaled versions. Therefore, we can calculate the theoretical muscle forces for different experimental conditions based on the measured muscle forces and joint loadings taken from one experimental condition and assuming that all input into the optimisation (e.g., moment arms, muscle attachment sites, size, fibre type distribution) and the optimisation approach are perfectly correct. Thus predictions of muscle force for other experimental conditions are accurate if the optimisation approach is appropriate, independent of the musculoskeletal geometry and other input required for the optimisation procedure. By comparing the muscle forces predicted in this way to the actual muscle forces obtained experimentally, we conclude that convex homogeneous non-linear optimisation approaches cannot predict individual muscle forces properly, as force-sharing among synergistic muscles obtained experimentally are not just scaled versions of joint loading, not even in a first approximation.  相似文献   

16.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints.This study investigated load-sharing in neutral standing and flexed postures using a detailed Finite Element (FE) model of the ligamentous lumbosacral spine, where muscle forces, gravity loads and intra-abdominal pressure, as predicted by a musculoskeletal model of the upper body, are input into the FE model. Flexion was simulated by applying vertebral rotations following spine rhythm measured in a previous in-vivo study, to the musculoskeletal model. The FE model predicted intradiscal pressure (IDP), strains in the annular fibers, contact forces in the facet joints, and forces in the ligaments. The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments’ contribution in resisting shear, compression, and moment was more significant in the flexed posture.  相似文献   

17.
Based on the mechanostat theory and the muscle-bone hypothesis, a methodological assessment of the musculoskeletal status in health and disease should relate maximum muscle force in relation to bone mass and geometry. While useful (i.e. three-dimensional) measures of tibial bone parameters can be obtained by peripheral quantitative computed tomography (pQCT), intrinsic plantarflexor muscle force cannot be directly measured under in vivo condition in humans. Instead, tissue size, torque and ground reaction force have been used as proxy markers of intrinsic muscle force. However, most of these proxy markers are not or insufficiently representative of maximum force. Based on our recent research, we describe a novel approach for the assessment of the lower leg muscle-bone unit in health and disease. It incorporates multiple one-legged hopping (m1LH) to assess maximum voluntary ground reaction force acting on the forefoot (F(m1LH)) and bone mineral content at the 14%-site of tibia length (vBMC(14%)) as assessed by pQCT. Using the quantitative relationship between these two variables in conjunction with F(m1LH) per body weight, we present a two-step quantitative diagnostic algorithm to discriminate between primary and secondary bone disorders in children and adults.  相似文献   

18.
Increased knee flexion during stance is a common gait deviation in the child with cerebral palsy (CP), with distal hamstring lengthening surgeries being an accepted course of treatment. Post-operatively, improvements in gait kinematics have been reported, however little change is noted in the patterns of muscle activity as portrayed by onset and offset timing in the surface electromyographic (sEMG) signals. Similar analysis based on the frequency content of the sEMG signals has seldom been applied, yet may provide additional insight into changes in muscle activity in response to surgery. The purpose of this study was to determine if changes in the time-frequency characteristics of the sEMG, extracted using wavelet analysis techniques, corresponded to improved gait kinematics observed post-surgical intervention, and whether there existed a relationship between frequency characteristics of the sEMG signals and the type of surgery required to correct gait kinematics. Data were collected from 16 children with typical development (TD) and 17 children with CP pre- and post-surgery. Muscle activity was recorded from the medial hamstring (MH) and vastus lateralis (VL) muscles, processed using the wavelet transform, and analyzed using functional principal component analyses (PCA). Results indicated that frequency differences were present pre-operatively depending if surgery was to be performed bilaterally or involved bone modification. Post-operatively, frequency characteristics of the VL more closely approximated those observed in children with TD, agreeing with the improved gait kinematics. MH characteristics, however, for the surgical groups demonstrated a deviation away for TD reflecting the altered muscle structure.  相似文献   

19.
Recent studies of sprinters and distance runners have suggested that variations in human foot proportions and plantarflexor muscle moment arm correspond to the level of sprint performance or running economy. Less clear, however, is whether differences in muscle moment arm are mediated by altered tendon paths or by variation in the centre of ankle joint rotation. Previous measurements of these differences have relied upon assumed joint centres and measurements of bone geometry made externally, such that they would be affected by the thickness of the overlying soft tissue. Using magnetic resonance imaging, we found that trained sprinters have shorter plantarflexor moment arms (p = 0.011) and longer forefoot bones (p = 0.019) than non-sprinters. The shorter moment arms of sprinters are attributable to differences in the location of the centre of rotation (p < 0.001) rather than to differences in the path of the Achilles tendon. A simple computer model suggests that increasing the ratio of forefoot to rearfoot length permits more plantarflexor muscle work during plantarflexion that occurs at rates expected during the acceleration phase following the sprint start.  相似文献   

20.
The evaluation of surface electromyography (sEMG) is commonly performed in children with cerebral palsy (CP) and reliable interpretation necessitates knowledge of the variability in age-matched, typically developing (TD) children. Variance ratio was calculated for inter-trial sEMG linear envelope (LE) and the Instantaneous Mean Frequency (IMNF) variability in the lower limb muscle in TD children, in three different age groups during slow, comfortable speed, and fast walking. Significantly greater variability was found in the 7–9 group compared to the 13–16 years. Variability during both slow and fast walking was significantly greater compared to comfortable speed walking and was profound in the 7–9 year age group. Variability of the IMNF was significantly greater than LE in the Tibialis-Anterior, Biceps-Femoris (BF), Vastus-Lateralis (VL), and Rectus-Femoris (RF). Clinical implications are that children under 10 years are more variable than older children when walking either slower or faster than self-selected walking speed. This suggests that muscle activation patterns in gait mature at a later stage of childhood than do kinematic gait patterns. Greater precaution, therefore, is needed when comparing sEMG patterns of less than 10 years of age patient and TD children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号