首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to compare the effects of resistance training to muscle failure (RT-F) and non-failure (RT-NF) on muscle mass, strength and activation of trained individuals. We also compared the effects of these protocols on muscle architecture parameters. A within-subjects design was used in which 14 participants had one leg randomly assigned to RT-F and the other to RT-NF. Each leg was trained 2 days per week for 10 weeks. Vastus lateralis (VL) muscle cross-sectional area (CSA), pennation angle (PA), fascicle length (FL) and 1-repetition maximum (1-RM) were assessed at baseline (Pre) and after 20 sessions (Post). The electromyographic signal (EMG) was assessed after the training period. RT-F and RT-NF protocols showed significant and similar increases in CSA (RT-F: 13.5% and RT-NF: 18.1%; P < 0.0001), PA (RT-F: 13.7% and RT-NF: 14.4%; P < 0.0001) and FL (RT-F: 11.8% and RT-NF: 8.6%; P < 0.0001). All protocols showed significant and similar increases in leg press (RT-F: 22.3% and RT-NF: 26.7%; P < 0.0001) and leg extension (RT-F: 33.3%, P < 0.0001 and RT-NF: 33.7%; P < 0.0001) 1-RM loads. No significant differences in EMG amplitude were detected between protocols (P > 0.05). In conclusion, RT-F and RT-NF are similarly effective in promoting increases in muscle mass, PA, FL, strength and activation.  相似文献   

2.
Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle’s contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques.  相似文献   

3.
In order to determine the three-dimensional (3D) resolved muscular anatomy of the mammalian esophagus, we have examined its myoarchitecture with diffusion spectrum magnetic resonance imaging (DSI) and tractography. DSI measures diffusion displacement as a function of magnetic gradients of varied direction and intensity and displays the displacement profile as a 3D contour per voxel. In tractography, the orientation vectors of maximum diffusion/voxel are identified, and intervoxel associations are constructed by a streamline algorithm based on angular similarity in order to generate mesoscale myofiber tracts. We demonstrate that the proximal body of the esophagus consists of helically aligned crossing fiber populations that overlap between layers in the form of a “zipper” region along the length of the tissue. With increasingly distal position along the length of the tissue, helix angle and skeletal muscle prevalence are reduced such that fibers align themselves in the most distal location into distinct inner circular and outer longitudinal smooth muscle layers. We conclude that esophageal myoanatomy consists of crossing myofibers exhibiting a decreasing degree of helicity as a function of axial position and propose that this unique geometric construct provides a mechanism to resist distension and promote aboral flow. This work was supported by the National Institutes of Health (grants RO1-DC05604 to Richard J. Gilbert and RO1- MH64044 to Van J. Wedeen.  相似文献   

4.
Abstract

We investigated differences of the medial lemniscus and its thalamocortical pathway (ML), and the spinothalamic tract and its thalamocortical pathway (STT) according to the cortical termination areas. We found that the ML and STT terminated in the motor cortex and the somatosensory cortex. The ML may be closely related to the motor cortex for motor planning and execution, while the STT may be closely related to the cerebral cortex for somatosensory function and motor execution.  相似文献   

5.
The purpose of this study was to compare the fascicle length, angle pennation and mechanical properties of the biceps femoris long head (BFlh) in dominant and non-dominant limbs in previously injured and uninjured professional football players. Fifteen professional football players were recruited to participate in this study. Seven players had suffered a BFlh injury during the previous season. Myotonometry mechanical properties were measured in the proximal, common tendon and distal BFlh using MyotonPRO, and angle pennation and fascicle length were also measured. We observed significantly higher distal BFlh frequency, stiffness, decrement, relaxation and creep than in the common tendon and proximal BFlh. The previously injured players showed significantly higher frequency and stiffness, and lower relaxation and creep in the dominant BFlh than did uninjured players. There were no significant differences between the fascicle length and angle pennation in previously injured and uninjured BFlh. Myotonometric measurement provides a quick and inexpensive way to check the properties of the BFlh in professional football players. Professional football players with previous BFlh injury showed higher intrinsic tension and a poorer capacity to deform than did players with no injury to the BFlh.  相似文献   

6.
目的:采用动物模型研究MR弥散加权成像评价转移性淋巴结与反应增生性淋巴结的价值。方法:24只新西兰兔随机分成两组,分别制作转移性淋巴结与反应增生性淋巴结模型,比较两组淋巴结的表观弥散系数(ADC),同时在DWI图上测量并比较两组淋巴结与肌肉的相对信号强度,并进行病理结果分析。结果:两组淋巴结的DWI相对信号强度无显著性差异(P>0.05)。转移性淋巴结组ADC值大于反应性增生组ADC值,分别为0.82±0.10×10-3mm2/s和1.17±0.14×10-3mm2/s,差异有统计学意义(P<0.05)。结论:MR弥散加权成像ADC值测量有助于转移性淋巴结与反应增生性淋巴结的鉴别  相似文献   

7.
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual during perinatal development leads to transient and enduring abnormalities in brain development and function. Determining the relevance of this evidence to brain disorders in humans has been hampered by an inability to determine antimortem brain DHA levels and limitations associated with a postmortem approach. Accordingly, there is a need for alternate or complementary approaches to better understand the role of DHA in cortical function and pathology, and conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this application. A major advantage of neuroimaging is that it permits prospective evaluation of the effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging evidence from MRI studies suggest that greater DHA status is associated with cortical structural and functional integrity, and suggest that reduced DHA status and abnormalities in cortical function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence from animal MRI studies support a critical role of DHA in normal brain development. Neuroimaging research in both human and animals therefore holds tremendous promise for developing a better understanding of the role of DHA status in cortical function, as well as for elucidating the impact of DHA deficiency on neuropathological processes implicated in the etiology and progression of neurodevelopmental and psychiatric disorders.  相似文献   

8.
目的大鼠是常用的制备心脏病模型的实验动物,而磁共振成像(MRI)技术已经成为评价心脏病模型病理进程和药效的重要技术手段,但是目前国内外没有正常大鼠心脏的磁共振成像技术参数,影响了这一技术的应用。本文利用磁共振成像技术,采集和定量分析Wistar、Sprague-Dawley和Lewis三种常用大鼠的左、右心室功能参数,为心脏病模型制备和分析提供参考数据。方法利用7.0T高场强MRI心脏电影(CINE)序列,分析这三种常用大鼠活体心脏组织的左、右心室心功能参数。结果获得三种大鼠左、右心室的8—9周龄功能参数,包括:左、右心室的舒张末容积(EDV)、收缩末容积(ESV)、射血分数(EF);左心室乳头肌层面舒张末期内径(EDD)、收缩末期内径(ESD)、短轴缩短率(Fs)、舒张末前后室壁厚度(EDAWT,EDPWT)、收缩末前后室壁厚度(ESAWT,ESPWT)、前室壁增厚率(AWT)和后室壁增厚率(PwT);右心室乳头肌层面舒张末室壁厚度(EDWT)、收缩末室壁厚度(ESWT)和室壁增厚率(WT)等十八项心脏主要功能和结构的正常值。结论本研究获得的三种大鼠十八项心脏主要功能和结构的正常值,可作为心脏病模型制备成模判定和病理进程、药物评价的参考数据。  相似文献   

9.
Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22–89 years) and measured microstructure parameters—fractional anisotropy (FA) and mean diffusivity (MD)—in 12 thigh muscles, and architecture parameters—pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)—in the rectus femoris (RF) and biceps femoris longus (BFL). Knee extension and flexion torques were also measured for comparison to architecture measures. FA and MD were associated with age (β = 0.33, p = 0.001, R2 = 0.10; and β = −0.36, p < 0.001, R2 = 0.12), and FA was negatively associated with Type I fiber proportions from the literature (β = −0.70, p = 0.024, and R2 = 0.43). Pennation angle, fiber curvature, fascicle length, and PCSA were associated with age in the RF (β = −0.22, 0.26, −0.23, and −0.31, respectively; p < 0.05), while in the BFL only curvature and fascicle length were associated with age (β = 0.36, and −0.40, respectively; p < 0.001). In the RF, pennation angle and PCSA were associated with strength (β = 0.29, and 0.46, respectively; p < 0.01); in the BFL, only PCSA was associated with strength (β = 0.43; p < 0.001). Our results show skeletal muscle architectural changes with aging and intermuscular differences in the microstructure. DT-MRI may prove useful for elucidating muscle changes in the early stages of sarcopenia and monitoring interventions aimed at preventing age-associated microstructural changes in muscle that lead to functional impairment.  相似文献   

10.
The aim of this study was to investigate the relationship between the remaining corticospinal tract (CST) as determined by diffusion tensor imaging (DTI) and 6-month motor outcome in patients with pontine infarct. Ratios of fractional anisotropy (FA), fiber number (FN), and CST area were calculated, and the FN ratio and CST area ratio showed significant correlation with all 6-month motor outcome. Thus, the remaining CST in the pons measured using DTI at early stage of stroke could predict motor outcome in patients with pontine infarct.  相似文献   

11.
摘要 目的:探讨磁共振成像(MRI)弥散张量成像(DTI)参数联合血清神经元特异性烯醇化酶(NSE)、脂蛋白相关磷脂酶A2(Lp-PLA2)在脑梗死患者的诊断和预后不良风险评估中的应用价值。方法:选择2021年3月至2022年9月吉林大学中日联谊医院收治的106例脑梗死患者作为脑梗死组,另选同期62例体检健康志愿者作为对照组,比较两组DTI参数,血清NSE和Lp-PLA2水平。脑梗死组出院90d后,采用改良Rankin量表(mRS)进行预后评估,分为预后良好组与预后不良组,并比较两组上述指标水平。受试者工作特征(ROC)曲线分析DTI参数联合血清NSE、Lp-PLA2诊断脑梗死和预测脑梗死患者预后的价值。结果:脑梗死组表观弥散系数(ADC)值、部分各向异性指数(FA)值低于对照组(P<0.05),血清NSE、Lp-PLA2水平高于对照组(P<0.05)。预后不良组FA值、ADC值低于预后良好组(P<0.05),血清NSE、Lp-PLA2水平高于预后良好组(P<0.05)。联合FA值、ADC值、NSE和Lp-PLA2诊断脑梗死以及预测脑梗死患者预后不良的曲线下面积(AUC)分别为0.852、0.874,均高于各因素单独诊断和预测。结论:脑梗死DTI参数FA值、ADC值降低,血清NSE、Lp-PLA2水平增高,联合DTI参数和血清NSE、Lp-PLA2检测在脑梗死诊断和预后预测中具有较高价值。  相似文献   

12.
Muscle atrophy is one of many factors contributing to post-stroke hemiparetic weakness. Since muscle force is a function of muscle size, the amount of muscle atrophy an individual muscle undergoes has implications for its overall force-generating capability post-stroke. In this study, post-stroke atrophy was determined bilaterally in fifteen leg muscles with volumes quantified using magnetic resonance imaging (MRI). All muscle volumes were adjusted to exclude non-contractile tissue content, and muscle atrophy was quantified by comparing the volumes between paretic and non-paretic sides. Non-contractile tissue or intramuscular fat was calculated by determining the amount of tissue excluded from the muscle volume measurement. With the exception of the gracilis, all individual paretic muscles examined had smaller volumes in the non-paretic side. The average decrease in volume for these paretic muscles was 23%. The gracilis volume, on the other hand, was approximately 11% larger on the paretic side. The amount of non-contractile tissue was higher in all paretic muscles except the gracilis, where no difference was observed between sides. To compensate for paretic plantar flexor weakness, one idea might be that use of the paretic gracilis actually causes the muscle to increase in size and not develop intramuscular fat. By eliminating non-contractile tissue from our volume calculations, we have presented volume data that more appropriately represents force-generating muscle tissue. Non-uniform muscle atrophy was observed across muscles and may provide important clues when assessing the effect of muscle atrophy on post-stroke gait.  相似文献   

13.
Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.  相似文献   

14.
Individual variability in delay of gratification (DG) is associated with a number of important outcomes in both non-human and human primates. Using diffusion tensor imaging (DTI), this study describes the relationship between probabilistic estimates of white matter tracts projecting from the caudate to the prefrontal cortex (PFC) and DG abilities in a sample of 49 captive chimpanzees (Pan troglodytes). After accounting for time between collection of DTI scans and DG measurement, age and sex, higher white matter connectivity between the caudate and right dorsal PFC was found to be significantly associated with the acquisition (i.e. training phase) but not the maintenance of DG abilities. No other associations were found to be significant. The integrity of white matter connectivity between regions of the striatum and the PFC appear to be associated with inhibitory control in chimpanzees, with perturbations on this circuit potentially leading to a variety of maladaptive outcomes. Additionally, results have potential translational implications for understanding the pathophysiology of a number of psychiatric and clinical outcomes in humans.  相似文献   

15.
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°).  相似文献   

16.
目的:了解足月缺氧缺血性脑病(HIE)患儿在磁共振扩散张量成像(DTI)下各向异性分数(FA)的动态变化,分析其诊断价值。方法:选取我院从2016年2月~2019年5月收治的足月HIE患儿90例,将其按照病情严重程度的差异分成轻度HIE组45例、中度HIE组27例、重度HIE组18例,另取同期30例正常足月新生儿作为对照组。所有新生儿均进行颅脑常规磁共振成像(MRI)以及DTI扫描,测量并对比内囊前肢、内囊后肢、胼胝体膝部、胼胝体压部以及豆状核的FA值。通过ROC曲线分析各FA值的诊断效能,以Spearman相关性分析各FA值和HIE病情严重程度的相关性。结果:中度HIE组、重度HIE组内囊前肢、内囊后肢、胼胝体膝部、胼胝体压部的FA值均低于对照组,且轻度HIE组、中度HIE组患儿上述FA值高于重度HIE组(均P<0.05)。ROC曲线分析结果显示,内囊后肢FA值对HIE的诊断效能最高,FA值的截断点为0.545,曲线下面积为0.804,其诊断敏感度、特异度以及Youden指数分别为61.4%、85.9%、0.473。Spearman相关性分析显示内囊前肢、内囊后肢、胼胝体膝部、胼胝体压部的FA值与HIE严重程度均呈负相关关系(均P<0.05)。结论:足月HIE患儿中,中、重度HIE患儿的内囊前肢、内囊后肢、胼胝体膝部、胼胝体压部的FA值较正常足月新生儿存在明显的降低,且上述FA值与HIE病情严重程度呈负相关关系,其中内囊后肢FA值对HIE的诊断效能最高,或可作为临床诊断足月新生儿HIE的参考指标。  相似文献   

17.

Background

Cerebral small vessel disease (SVD) is very common in elderly and related to cognition, although this relation is weak. This might be because the underlying pathology of white matter lesions (WML) is diverse and cannot be properly appreciated with conventional FLAIR MRI. In addition, conventional MRI is not sensitive to early loss of microstructural integrity of the normal appearing white matter (NAWM), which might be an important factor. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity and we have used this to investigate the relation between white matter integrity, in both WML and NAWM, and cognition among elderly with cerebral SVD.

Methods

The RUN DMC study is a prospective cohort study among 503 independently living, non-demented elderly with cerebral SVD aged between 50 and 85 years. All subjects underwent MRI and DTI scanning. WML were segmented manually. We measured mean diffusivity (MD) and fractional anisotropy (FA), as assessed by DTI in both WML and NAWM.

Results

Inverse relations were found between MD in the WML and NAWM and global cognitive function (β = −.11, p < 0.05; β = −.18, p < 0.001), psychomotor speed (β = −.15, p < 0.01; β = −.18, p < 0.001), concept shifting (β = −.11, p < 0.05; β = −.10, p < 0.05) and attention (β = −.12, p < 0.05; β = −.15, p < 0.001). The relation between DTI parameters in both WML and NAWM and cognitive performance was most pronounced in subjects with severe WML.

Conclusion

DTI parameters in both WML and NAWM correlate with cognitive performance, independent of SVD. DTI may be a promising tool in exploring the mechanisms of cognitive decline and could function as a surrogate marker for disease progression in therapeutic trials.This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

18.
The paper describes ex vivo applications of colchicine derivatives for the treatment of human T-Lymphoblastoid (CEM) cells. Moreover, the role of the substitutions of ring A at C-1 and C-7 side chain of colchicine analogues was probed by the synthesis and examination of their effects on the three-dimensional (3-D) CEM cells’ growth. The CEM cells were cultured in the hollow fiber bioreactor (HFB) device. We used 1H and 19F magnetic resonance imaging (MRI) to monitor changes in 3-D CEM cell culture. 19F MRI was used for visualization of the cellular uptake of new fluorine derivatives. Before and after treatment CEM cells profile was investigated with high performance liquid chromatography (HPLC-UV).  相似文献   

19.
T1-weighted magnetic resonance imaging (MRI) in conjunction with image and segmentation analysis (i.e., the process of digitally partitioning tissues based on specified MR image characteristics) was evaluated as a noninvasive alternative for differentiating muscle fiber types and quantifying the amounts of slow, red aerobic muscle in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis). MRI-determinations of red muscle quantity and position made for the mid-body sections of three mako sharks (73.5-110 cm fork length, FL) are in close agreement (within the 95% confidence intervals) with data obtained for the same sections by the conventional dissection method involving serial cross-sectioning and volumetric analyses, and with previously reported findings for this species. The overall distribution of salmon shark red muscle as a function of body fork length was also found to be consistent with previously acquired serial dissection data for this species; however, MR imaging revealed an anterior shift in peak red muscle cross-sectional area corresponding to an increase in body mass. Moreover, MRI facilitated visualization of the intact and anatomically correct relationship of tendon linking the red muscle and the caudal peduncle. This study thus demonstrates that MRI is effective in acquiring high-resolution three-dimensional digital data with high contrast between different fish tissue types. Relative to serial dissection, MRI allows more precise quantification of the position, volume, and other details about the types of muscle within the fish myotome, while conserving specimen structural integrity.  相似文献   

20.
Dry or fully imbibed seeds of western white pine (Pinus monticola Dougl. ex D. Don) were studied using high-resolution magnetic resonance imaging (MRI). Analyses of the dry seed revealed many of the gross anatomical features of seed structure. Furthermore, the non-invasive nature of MRI allowed for a study of the dynamics of water and oil distribution during in situ imbibition of a single seed with time-lapse chemical shift selective MRI. During soaking of the dry seed, water penetrated through the seed coat and megagametophyte. The cotyledons of the embryo (located in the chalazal end of the seed) were the first to show hydration followed by the hypocotyl and later the radicle. After penetrating the seed coat, water in the micropylar end of the seed likely also contributed to further hydration of the embryo; however, the micropyle itself did not appear to be a site for water entry into the seed. A model that describes the kinetics of the earlier stages of imbibition is proposed. Non-viable pine seeds captured with MRI displayed atypical imbibition kinetics and were distinguished by their rapid and uncontrolled water uptake. The potential of MR microimaging for detailed studies of water uptake and distribution during the soaking, moist chilling (stratification), and germination of conifer seeds is discussed.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号