首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterococcus faecalis is a ubiquitous bacterium of the gut that is observed in persistent periradicular infections. Its pathogenicity is associated with biofilm formation and the ability to survive under nutrient-poor (starvation) conditions. However, characteristics of chemical composition of biofilm cells developed by starved E. faecalis cells remain poorly understood. In this study, E. faecalis cells in exponential, stationary, and starvation phases were prepared and separately cultured to form biofilms. Confocal laser scanning microscopy was performed to verify biofilm formation. Raman microscopy was used to investigate the chemical composition of cells within the biofilms. Compared to cells in exponential or stationary phase, starved cells developed biofilms with fewer culturable cells (P?E. faecalis.  相似文献   

2.
Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates exhibit key characteristics of biofilms, including the presence of extracellular matrix and increased resistance to antibiotics compared to planktonic bacteria. Using isogenic mutants in the type III secretion system, we found that the translocon, but not the effectors themselves, were required for cell-associated aggregation on the surface of polarized epithelial cells and at early time points in a murine model of acute pneumonia. In contrast, the translocon was not required for aggregation on abiotic surfaces, suggesting a novel function for the type III secretion system during cell-associated aggregation. Supernatants from epithelial cells infected with wild-type bacteria or from cells treated with the pore-forming toxin streptolysin O could rescue aggregate formation in a type III secretion mutant, indicating that cell-associated aggregation requires one or more host cell factors. Our results suggest a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection.  相似文献   

3.
Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings.  相似文献   

4.
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.  相似文献   

5.
Legionella pneumophila persists for a long time in aquatic habitats, where the bacteria associate with biofilms and replicate within protozoan predators. While L. pneumophila serves as a paradigm for intracellular growth within protozoa, it is less clear whether the bacteria form or replicate within biofilms in the absence of protozoa. In this study, we analyzed surface adherence of and biofilm formation by L. pneumophila in a rich medium that supported axenic replication. Biofilm formation by the virulent L. pneumophila strain JR32 and by clinical and environmental isolates was analyzed by confocal microscopy and crystal violet staining. Strain JR32 formed biofilms on glass surfaces and upright polystyrene wells, as well as on pins of “inverse” microtiter plates, indicating that biofilm formation was not simply due to sedimentation of the bacteria. Biofilm formation by an L. pneumophila fliA mutant lacking the alternative sigma factor σ28 was reduced, which demonstrated that bacterial factors are required. Accumulation of biomass coincided with an increase in the optical density at 600 nm and ceased when the bacteria reached the stationary growth phase. L. pneumophila neither grew nor formed biofilms in the inverse system if the medium was exchanged twice a day. However, after addition of Acanthamoeba castellanii, the bacteria proliferated and adhered to surfaces. Sessile (surface-attached) and planktonic (free-swimming) L. pneumophila expressed β-galactosidase activity to similar extents, and therefore, the observed lack of proliferation of surface-attached bacteria was not due to impaired protein synthesis or metabolic activity. Cocultivation of green fluorescent protein (GFP)- and DsRed-labeled L. pneumophila led to randomly interspersed cells on the substratum and in aggregates, and no sizeable patches of clonally growing bacteria were observed. Our findings indicate that biofilm formation by L. pneumophila in a rich medium is due to growth of planktonic bacteria rather than to growth of sessile bacteria. In agreement with this conclusion, GFP-labeled L. pneumophila initially adhered in a continuous-flow chamber system but detached over time; the detachment correlated with the flow rate, and there was no accumulation of biomass. Under these conditions, L. pneumophila persisted in biofilms formed by Empedobacter breve or Microbacterium sp. but not in biofilms formed by Klebsiella pneumoniae or other environmental bacteria, suggesting that specific interactions between the bacteria modulate adherence.  相似文献   

6.
Despite the economic and sanitary problems caused by harmful biofilms, biofilms are nonetheless used empirically in industrial environmental and bioremediation processes and may be of potential use in medical settings for interfering with pathogen development. Escherichia coli is one of the bacteria with which biofilm formation has been studied in great detail, and it is especially appreciated for biotechnology applications because of its genetic amenability. Here we describe the development of two new genetic tools enabling the constitutive and inducible expression of any gene or operon of interest at its native locus. In addition to providing valuable tools for complementation and overexpression experiments, these two compact genetic cassettes were used to modulate the biofilm formation capacities of E. coli by taking control of two biofilm-promoting factors, autotransported antigen 43 adhesin and the bscABZC cellulose operon. The modulation of the biofilm formation capacities of E. coli or those of other bacteria capable of being genetically manipulated may be of use both for reducing and for improving the impact of biofilms in a number of industrial and medical applications.  相似文献   

7.
Many bacteria successfully colonize animals by forming protective biofilms. Molecular processes that underlie the formation and function of biofilms in pathogenic bacteria are well characterized. In contrast, the relationship between biofilms and host colonization by symbiotic bacteria is less well understood. Tsetse flies (Glossina spp.) house 3 maternally transmitted symbionts, one of which is a commensal (Sodalis glossinidius) found in several host tissues, including the gut. We determined that Sodalis forms biofilms in the tsetse gut and that this process is influenced by the Sodalis outer membrane protein A (OmpA). Mutant Sodalis strains that do not produce OmpA (Sodalis ΔOmpA mutants) fail to form biofilms in vitro and are unable to colonize the tsetse gut unless endogenous symbiotic bacteria are present. Our data indicate that in the absence of biofilms, Sodalis ΔOmpA mutant cells are exposed to and eliminated by tsetse''s innate immune system, suggesting that biofilms help Sodalis evade the host immune system. Tsetse is the sole vector of pathogenic African trypanosomes, which also reside in the fly gut. Acquiring a better understanding of the dynamics that promote Sodalis colonization of the tsetse gut may enhance the development of novel disease control strategies.  相似文献   

8.
The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.  相似文献   

9.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

10.
Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ΔcprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ΔcprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ΔcprS and flagellar mutations (ΔflhA, ΔpflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms.  相似文献   

11.

Background

The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS). Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS.

Methods/Principal Findings

Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms.

Conclusion/Significance

Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.  相似文献   

12.
Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log10 CFU/cm2 reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10 CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.  相似文献   

13.
Context: Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail.

Objective: The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms.

Materials and methods: Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were ?13 and 8?mV, respectively, and both had a mean particle size of approximately 180?nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy.

Results: The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms.

Discussion and conclusion: In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.  相似文献   

14.
Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms'' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies to control biofilms with widespread applications in industry as well as medicine.  相似文献   

15.
16.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

17.
Nontypeable Haemophilus influenzae (NTHI) causes chronic infections that feature the formation of biofilm communities. NTHI variants within biofilms have on their surfaces lipooligosaccharides containing sialic acid (NeuAc) and phosphorylcholine (PCho). Our work showed that NeuAc promotes biofilm formation, but we observed no defect in the initial stages of biofilm formation for mutants lacking PCho. In this study, we asked if alterations in NTHI PCho content affect later stages of biofilm maturation. Biofilm communities were compared for NTHI 2019 and isogenic mutants that either lacked PCho (NTHI 2019 licD) or were constitutively locked in the PCho-positive phase (NTHI 2019 licON). Transformants expressing green fluorescent protein were cultured in continuous-flow biofilms and analyzed by confocal laser scanning microscopy. COMSTAT was used to quantify different biofilm parameters. PCho expression correlated significantly with increased biofilm thickness, surface coverage, and total biomass, as well as with a decrease in biofilm roughness. Comparable results were obtained by scanning electron microscopy. Analysis of thin sections of biofilms by transmission electron microscopy revealed shedding of outer membrane vesicles by NTHI bacteria within biofilms and staining of matrix material with ruthenium red in biofilms formed by NTHI 2019 licON. The biofilms of all three strains were comparable in viability, the presence of extracellular DNA, and the presence of sialylated moieties on or between bacteria. In vivo infection studies using the chinchilla model of otitis media showed a direct correlation between PCho expression and biofilm formation within the middle-ear chamber and an inverse relationship between PCho and persistence in the planktonic phase in middle-ear effusions. Collectively, these data show that PCho correlates with, and may promote, the maturation of NTHI biofilms. Further, this structure may be disadvantageous in the planktonic phase.  相似文献   

18.
Bacterial biofilms have been found to develop on root surfaces outside the apical foramen and be associated with refractory periapical periodontitis. However, it is unknown which bacterial species form extraradicular biofilms. The present study aimed to investigate the identity and localization of bacteria in human extraradicular biofilms. Twenty extraradicular biofilms, used to identify bacteria using a PCR-based 16S rRNA gene assay, and seven root-tips, used to observe immunohistochemical localization of three selected bacterial species, were taken from 27 patients with refractory periapical periodontitis. Bacterial DNA was detected from 14 of the 20 samples, and 113 bacterial species were isolated. Fusobacterium nucleatum (14 of 14), Porphyromonas gingivalis (12 of 14), and Tannellera forsythensis (8 of 14) were frequently detected. Unidentified and uncultured bacterial DNA was also detected in 11 of the 14 samples in which DNA was detected. In the biofilms, P. gingivalis was immunohistochemically detected in all parts of the extraradicular biofilms. Positive reactions to anti-F. nucleatum and anti-T. forsythensis sera were found at specific portions of the biofilm. These findings suggested that P. gingivalis, T. forsythensis, and F. nucleatum were associated with extraradicular biofilm formation and refractory periapical periodontitis.  相似文献   

19.
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.  相似文献   

20.
Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号