共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to develop and train a Neural Network (NN) that uses barbell mass and motions to predict hip, knee, and ankle Net Joint Moments (NJM) during a weightlifting exercise. Seven weightlifters performed two cleans at 85% of their competition maximum while ground reaction forces and 3-D motion data were recorded. An inverse dynamics procedure was used to calculate hip, knee, and ankle NJM. Vertical and horizontal barbell motion data were extracted and, along with barbell mass, used as inputs to a NN. The NN was then trained to model the association between the mass and kinematics of the barbell and the calculated NJM for six weightlifters, the data from the remaining weightlifter was then used to test the performance of the NN – this was repeated 7 times with a k-fold cross-validation procedure to assess the NN accuracy. Joint-specific predictions of NJM produced coefficients of determination (r2) that ranged from 0.79 to 0.95, and the percent difference between NN-predicted and inverse dynamics calculated peak NJM ranged between 5% and 16%. The NN was thus able to predict the spatiotemporal patterns and discrete peaks of the three NJM with reasonable accuracy, which suggests that it is feasible to predict lower extremity NJM from the mass and kinematics of the barbell. Future work is needed to determine whether combining a NN model with low cost technology (e.g., digital video and free digitising software) can also be used to predict NJM of weightlifters during field-testing situations, such as practice and competition, with comparable accuracy. 相似文献
2.
3.
The aim of this study was to use Recurrent Neural Network (RNN) to predict the orientation and amplitude of the applied force during the push phase of manual wheelchair propulsion.Trunk and the right-upper limb kinematics data were assessed with an optoeletronic device (Qualisys) and the force applied on the handrim was recorded with an instrumented wheel (SMARTWheel®). Data acquisitions were performed at 60/80/10/120/140% of the freely chosen frequency at submaximal and maximal conditions. The final database consisted of d = 5708 push phases.The input data were the trunk and right upper-limb kinematics (joint angle, angular velocity and acceleration) and anthropometric data (height, weight, segment length) and the output data were the applied forces orientation and amplitude. A ratio of 70/15/15 was used to train, validate and test the RNN (dtrain = 3996, dvalidation = 856 and dtest = 856). The angle and amplitude errors between the measured and predicted force was assessed from dtest.Results showed that for most of the push phase (∼70%), the force direction prediction errors were less than 12°. The mean absolute amplitude errors were less than 8 N and the mean absolute amplitude percentage errors were less than 20% for most of the push phase (∼80%). 相似文献
4.
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. With AI becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, segmentation, or classification, the key for a safe and efficient use of clinical AI applications relies, in part, on informed practitioners. The aim of this review is to present the basic technological pillars of AI, together with the state-of-the-art machine learning methods and their application to medical imaging. In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions. 相似文献
5.
6.
Sindhoora Kaniyala Melanthota Dharshini Gopal Shweta Chakrabarti Anirudh Ameya Kashyap Raghu Radhakrishnan Nirmal Mazumder 《Biophysical reviews》2022,14(2):463
Optical microscopy has emerged as a key driver of fundamental research since it provides the ability to probe into imperceptible structures in the biomedical world. For the detailed investigation of samples, a high-resolution image with enhanced contrast and minimal damage is preferred. To achieve this, an automated image analysis method is preferable over manual analysis in terms of both speed of acquisition and reduced error accumulation. In this regard, deep learning (DL)-based image processing can be highly beneficial. The review summarises and critiques the use of DL in image processing for the data collected using various optical microscopic techniques. In tandem with optical microscopy, DL has already found applications in various problems related to image classification and segmentation. It has also performed well in enhancing image resolution in smartphone-based microscopy, which in turn enablse crucial medical assistance in remote places.Graphical abstract 相似文献
7.
IntroductionDeep learning (DL) is used to classify, detect, and quantify gold nanoparticles (AuNPs) in a human-sized phantom with a clinical MDCT scanner.MethodsAuNPs were imaged at concentrations between 0.0274 and 200 mgAu/mL in a 33 cm phantom. 1 mm-thick CT image slices were acquired at 120 kVp with a CTDIvol of 23.6 mGy. A convolutional neural network (CNN) was trained on 544 images to classify 17 different tissue types and AuNP concentrations. A second set of 544 images was then used for testing.ResultsAuNPs were classified with 95% accuracy at 0.1095 mgAu/mL and 97% accuracy at 0.2189 mgAu/mL. Both these concentrations are lower than what humans can visually perceive (0.3–1.4 mgAu/mL). AuNP concentrations were also classified with 95% accuracy at 150 and 200 mgAu/mL. These high concentrations result in CT numbers that are at or above the 12-bit limit for CT’s dynamic range where extended Hounsfield scales are otherwise required for measuring differences in contrast.ConclusionsWe have shown that DL can be used to detect AuNPs at concentrations lower than what humans can visually perceive and can also quantify very high AuNP concentrations that exceed the typical 12-bit dynamic range of clinical MDCT scanners. This second finding is possible due to inhomogeneous AuNP distributions and characteristic streak artifacts. It may even be possible to extend this approach beyond AuNP imaging in CT for quantifying high density objects without extended Hounsfield scales. 相似文献
8.
为解决大量红外相机监测影像数据量庞大、亟待快速和自动识别的问题,本研究以东北虎豹国家公园为例,应用卷积神经网络,通过深度学习算法对红外相机影像实现物种自动识别。本研究选择8个物种的红外相机视频影像,以50帧率均匀采集成图片格式,每个物种筛选不同角度、不同环境条件的图片,建立图片数据集,训练集2 074张,测试集519张。对图片进行目标打框、信息标注,选用darknet框架下的YOLO v3模型进行训练,首先不区分昼(RGB)夜(灰度)图像进行训练,再区分昼夜进行训练,最后分别对昼夜图像利用微调(fine-tune)进行训练。研究初步结果显示,基于YOLO v3模型对自然条件下拍摄的红外相机图像进行物种自动识别能够一定程度减轻人力负担,但其效果还需通过完善数据集进行提升。fine-tune在小数据集时或可作为辅助。模型对8个物种识别的平均精确率达到84.9%~96.0%,且模型收敛。 相似文献
9.
10.
PurposeArtificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context.MethodsA narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections.ResultsWe first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way.ConclusionsBiomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice. 相似文献
11.
PurposeTo perform a systematic review on the research on the application of artificial intelligence (AI) to imaging published in Italy and identify its fields of application, methods and results.Materials and MethodsA Pubmed search was conducted using terms Artificial Intelligence, Machine Learning, Deep learning, imaging, and Italy as affiliation, excluding reviews and papers outside time interval 2015–2020. In a second phase, participants of the working group AI4MP on Artificial Intelligence of the Italian Association of Physics in Medicine (AIFM) searched for papers on AI in imaging.ResultsThe Pubmed search produced 794 results. 168 studies were selected, of which 122 were from Pubmed search and 46 from the working group. The most used imaging modality was MRI (44%) followed by CT(12%) ad radiography/mammography (11%). The most common clinical indication were neurological diseases (29%) and diagnosis of cancer (25%). Classification was the most common task for AI (57%) followed by segmentation (16%). 65% of studies used machine learning and 35% used deep learning. We observed a rapid increase of research in Italy on artificial intelligence in the last 5 years, peaking at 155% from 2018 to 2019.ConclusionsWe are witnessing an unprecedented interest in AI applied to imaging in Italy, in a diversity of fields and imaging techniques. Further initiatives are needed to build common frameworks and databases, collaborations among different types of institutions, and guidelines for research on AI. 相似文献
12.
《基因组蛋白质组与生物信息学报(英文版)》2019,17(5):478-495
Accurate identification of compound–protein interactions(CPIs) in silico may deepen our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug discovery and development.Conventional similarity-or docking-based computational methods for predicting CPIs rarely exploit latent features from currently available large-scale unlabeled compound and protein data and often limit their usage to relatively small-scale datasets.In the present study,we propose Deep CPI,a novel general and scalable computational framework that combines effective feature embedding(a technique of representation learning) with powerful deep learning methods to accurately predict CPIs at a large scale.Deep CPI automatically learns the implicit yet expressive low-dimensional features of compounds and proteins from a massive amount of unlabeled data.Evaluations of the measured CPIs in large-scale databases,such as Ch EMBL and Binding DB,as well as of the known drug–target interactions from Drug Bank,demonstrated the superior predictive performance of Deep CPI.Furthermore,several interactions among smallmolecule compounds and three G protein-coupled receptor targets(glucagon-like peptide-1 receptor,glucagon receptor,and vasoactive intestinal peptide receptor) predicted using Deep CPI were experimentally validated.The present study suggests that Deep CPI is a useful and powerful tool for drug discovery and repositioning.The source code of Deep CPI can be downloaded from https://github.com/Fangping Wan/Deep CPI. 相似文献
13.
《基因组蛋白质组与生物信息学报(英文版)》2019,17(6):645-656
Intrinsically disordered or unstructured proteins (or regions in proteins) have been found to be important in a wide range of biological functions and implicated in many diseases. Due to the high cost and low efficiency of experimental determination of intrinsic disorder and the exponential increase of unannotated protein sequences, developing complementary computational prediction methods has been an active area of research for several decades. Here, we employed an ensemble of deep Squeeze-and-Excitation residual inception and long short-term memory (LSTM) networks for predicting protein intrinsic disorder with input from evolutionary information and predicted one-dimensional structural properties. The method, called SPOT-Disorder2, offers substantial and consistent improvement not only over our previous technique based on LSTM networks alone, but also over other state-of-the-art techniques in three independent tests with different ratios of disordered to ordered amino acid residues, and for sequences with either rich or limited evolutionary information. More importantly, semi-disordered regions predicted in SPOT-Disorder2 are more accurate in identifying molecular recognition features (MoRFs) than methods directly designed for MoRFs prediction. SPOT-Disorder2 is available as a web server and as a standalone program at https://sparks-lab.org/server/spot-disorder2/. 相似文献
14.
This review presents a modern perspective on dynamical systems in the context of current goals and open challenges. In particular, our review focuses on the key challenges of discovering dynamics from data and finding data-driven representations that make nonlinear systems amenable to linear analysis. We explore various challenges in modern dynamical systems, along with emerging techniques in data science and machine learning to tackle them. The two chief challenges are (1) nonlinear dynamics and (2) unknown or partially known dynamics. Machine learning is providing new and powerful techniques for both challenges. Dimensionality reduction methods are used for projecting dynamical methods in reduced form, and these methods perform computational efficiency on real-world data. Data-driven models drive to discover the governing equations and give laws of physics. The identification of dynamical systems through deep learning techniques succeeds in inferring physical systems. Machine learning provides advanced new and powerful algorithms for nonlinear dynamics. Advanced deep learning methods like autoencoders, recurrent neural networks, convolutional neural networks, and reinforcement learning are used in modeling of dynamical systems. 相似文献
15.
《Animal : an international journal of animal bioscience》2021,15(5):100212
The sheep sector has not suffered the technification that other livestock sectors have. The lack of technological knowledge of the farmers and the economic limitations of the sector have made this technification difficult. One of the most widely used technologies is Precision Livestock Farming (PLF). PLF has already been used in other livestock sectors to improve farming efficiency. In the light of the problem that sheep farmers have in weighing lambs and their low precision, this paper proposes a system for estimating weight by means of 3D image capture. Thus, zenithal images of 272 lambs have been recorded. They have been processed using the capture of the upper area and the average depth of the pixels of the lamb. This estimates the weight of the animal with an error of less than 6%. This technology has a low economic cost and is easy to operate, helping farmers to be more willing to use it. This method manages to reduce the duration of the process, the stress of the animal and to improve the overall accuracy in weight estimation. Thus, it will help to have a greater control of the weight of the animal and to improve the economic profitability that the farmer obtains for the lambs. 相似文献
16.
《仿生工程学报(英文版)》2024,21(2)
In this work,a three dimensional(3D)convolutional neural network(CNN)model based on image slices of various normal and pathological vocal folds is proposed for accurate and efficient prediction of glottal flows.The 3D CNN model is composed of the feature extraction block and regression block.The feature extraction block is capable of learning low dimensional features from the high dimensional image data of the glottal shape,and the regression block is employed to flatten the output from the feature extraction block and obtain the desired glottal flow data.The input image data is the condensed set of 2D image slices captured in the axial plane of the 3D vocal folds,where these glottal shapes are synthesized based on the equa-tions of normal vibration modes.The output flow data is the corresponding flow rate,averaged glottal pressure and nodal pressure distributions over the glottal surface.The 3D CNN model is built to establish the mapping between the input image data and output flow data.The ground-truth flow variables of each glottal shape in the training and test datasets are obtained by a high-fidelity sharp-interface immersed-boundary solver.The proposed model is trained to predict the concerned flow variables for glottal shapes in the test set.The present 3D CNN model is more efficient than traditional Computational Fluid Dynamics(CFD)models while the accuracy can still be retained,and more powerful than previous data-driven prediction models because more details of the glottal flow can be provided.The prediction performance of the trained 3D CNN model in accuracy and efficiency indicates that this model could be promising for future clinical applications. 相似文献
17.
18.
Alex Morehead;Jian Liu;Jianlin Cheng; 《Protein science : a publication of the Protein Society》2024,33(3):e4932
Estimating the accuracy of protein structural models is a critical task in protein bioinformatics. The need for robust methods in the estimation of protein model accuracy (EMA) is prevalent in the field of protein structure prediction, where computationally-predicted structures need to be screened rapidly for the reliability of the positions predicted for each of their amino acid residues and their overall quality. Current methods proposed for EMA are either coupled tightly to existing protein structure prediction methods or evaluate protein structures without sufficiently leveraging the rich, geometric information available in such structures to guide accuracy estimation. In this work, we propose a geometric message passing neural network referred to as the geometry-complete perceptron network for protein structure EMA (GCPNet-EMA), where we demonstrate through rigorous computational benchmarks that GCPNet-EMA's accuracy estimations are 47% faster and more than 10% (6%) more correlated with ground-truth measures of per-residue (per-target) structural accuracy compared to baseline state-of-the-art methods for tertiary (multimer) structure EMA including AlphaFold 2. The source code and data for GCPNet-EMA are available on GitHub, and a public web server implementation is freely available. 相似文献
19.
PurposePrecision cancer medicine is dependent on accurate prediction of disease and treatment outcome, requiring integration of clinical, imaging and interventional knowledge. User controlled pipelines are capable of feature integration with varied levels of human interaction. In this work we present two pipelines designed to combine clinical, radiomic (quantified imaging), and RTx-omic (quantified radiation therapy (RT) plan) information for prediction of locoregional failure (LRF) in head and neck cancer (H&N).MethodsPipelines were designed to extract information and model patient outcomes based on clinical features, computed tomography (CT) imaging, and planned RT dose volumes. We predict H&N LRF using: 1) a highly user-driven pipeline that leverages modular design and machine learning for feature extraction and model development; and 2) a pipeline with minimal user input that utilizes deep learning convolutional neural networks to extract and combine CT imaging, RT dose and clinical features for model development.ResultsClinical features with logistic regression in our highly user-driven pipeline had the highest precision recall area under the curve (PR-AUC) of 0.66 (0.33–0.93), where a PR-AUC = 0.11 is considered random. CONCLUSIONS: Our work demonstrates the potential to aggregate features from multiple specialties for conditional-outcome predictions using pipelines with varied levels of human interaction. Most importantly, our results provide insights into the importance of data curation and quality, as well as user, data and methodology bias awareness as it pertains to result interpretation in user controlled pipelines. 相似文献
20.
PurposeNoticing the fast growing translation of artificial intelligence (AI) technologies to medical image analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges are addressed when implementing big data concepts with high-throughput image data processing like radiomics and machine learning in a radiooncology environment to support clinical decisions.MethodsBased on the experience of our interdisciplinary radiomics working group, techniques for processing minable data, extracting radiomics features and associating this information with clinical, physical and biological data for the development of prediction models are described. A special emphasis was placed on the potential clinical significance of such an approach.ResultsClinical studies demonstrate the role of radiomics analysis as an additional independent source of information with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, genetic and dosimetric data (‘panomics’) challenges the medical physicist as member of the radiooncology team.ConclusionsThe new field of big data processing in radiooncology offers opportunities to support clinical decisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To cope with this challenge national and international organizations for medical physics should organize more training opportunities in artificial intelligence technologies in radiooncology. 相似文献