首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new locally produced P-inactivation agent, Z2G1, was tested on sediment cores from Lake Okaro, New Zealand, for phosphorus (P) removal efficacy and any non-target side effects prior to a whole lake trial to manage internal P loading. Z2G1 is a granular product which settles rapidly, and was designed as a sediment capping material. It is a modified zeolite which acts as a carrier for the aluminium (Al)-based P-binding agent. It was found to have a high affinity for P and did not release Al into the water column. Continuous-flow incubation study results showed that a thin layer of Z2G1 (~2 mm) could completely block the release of P from the sediment under aerobic and anoxic conditions, and remove P from the overlying water in contact with the capping layer. The Z2G1 capping layer neither released metals itself nor did it induce the release of metals from the sediments, and the zeolite substrate absorbed arsenic and mercury from the geothermally influenced Lake Okaro sediments. In general, zeolites are strong cation absorbers and the zeolite substrate of Z2G1 absorbed ammoniacal nitrogen, making it the only sediment capping material to actively remove both P and N. There were, however, indications of a suppression effect on microbial denitrification by the Z2G1 capping layer under aerobic conditions. Overall, the Z2G1 sediment capping material is a highly effective P-inactivation agent which might be a useful material for managing internal P loads in eutrophic lakes.  相似文献   

2.
We have proposed a technique to enhance the decomposition of carbon dioxide by gamma irradiation. This is possible by putting metal components into CO2 gas to promote the conversion of gamma rays to lower-energy electrons through Compton, photoelectron and cascading electron knock-on events in metals. Numerical simulations using the EGS code indicated that the number of lower-energy electrons ejected from metals into CO2 gas increases with increasing Z number and/or density of the metals; this was supported by the experimental results, i.e., the CO2-containing metals with a higher Z number exhibited a greater efficiency for production of CO. In addition, production of CO could be enhanced by carefully controlling the volume and surface area of metal components as well as the proximity to adjacent metal components. These experimental results successfully demonstrated that modification of the kinds of metal components and metal structures can control the energy and the number of electrons ejected from the metals and can lead to enhancement of production of CO from CO2.  相似文献   

3.
菰和菖蒲对重金属的胁迫反应及其富集能力   总被引:26,自引:3,他引:23  
通过盆栽实验研究了Cu—Zn—Ph-Cd复合污染条件下,菰和菖蒲的生长状况、生理特性及吸收和富集重金属的能力。结果表明,高浓度污染下菰和菖蒲不能存活;低、中浓度中菖蒲的生长受到抑制,菰各生长指标与对照相比差异不显著,表明菰对低、中浓度重金属的耐性强于菖蒲。随着污染浓度的增加,菰和菖蒲叶片叶绿索含量显著降低;菰叶绿素a/b值略有降低,菖蒲叶绿素a/b值显著降低;菰和菖蒲叶片脯氨酸含量、相对电导率显著升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)活性在低浓度时升高,中浓度时降低。菰体内重金属含量为Zn〉Cu〉Pb〉Cd,菖蒲体内的含量为Cu〉Zn〉Pb〉Cd,且二者体内的重金属含量都随着污染浓度的增加而升高。菰和菖蒲对Cd的富集系数较大,地上部分(茎与叶)和地下部分(根与根状茎)均大于1;对Pb的富集系数较小,地上部分和地下部分均小于1。菰和菖蒲地下部分重金属含量均高于地上部分含量,二者根系对4种重金属都有较强的滞留效应,平均滞留率均大于50%。各处理中菰对重金属的吸收量均高于菖蒲。综合分析菰和菖蒲的生长、生理及富集重金属的能力,菰比菖蒲更适用于低、中浓度重金属污染水体的生态修复。  相似文献   

4.
Noble metals, despite their expensiveness, display irreplaceable roles in widespread fields. To acquire novel physicochemical properties and boost the performance‐to‐price ratio for practical applications, one core direction is to engineer noble metals into nanostructured porous networks. Noble metal foams (NMFs), featuring self‐supported, 3D interconnected networks structured from noble‐metal‐based building blocks, have drawn tremendous attention in the last two decades. Inheriting structural traits of foams and physicochemical properties of noble metals, NMFs showcase a variety of interesting properties and impressive prospect in diverse fields, including electrocatalysis, heterogeneous catalysis, surface‐enhanced Raman scattering, sensing and actuation, etc. A number of NMFs have been created and versatile synthetic approaches have been developed. However, because of the innate limitation of specific methods and the insufficient understanding of formation mechanisms, flexible manipulation of compositions, structures, and corresponding properties of NMFs are still challenging. Thus, the correlations between composition/structure and properties are seldom established, retarding material design/optimization for specific applications. This review is devoted to a comprehensive introduction of NMFs ranging from synthesis to applications, with an emphasis on electrocatalysis. Challenges and opportunities are also included to guide possible research directions in this field and promote the interest of interdisciplinary scientists.  相似文献   

5.
The Zingiber genus, which includes the herbs known as gingers, commonly used in cooking, is well known for its medicinal properties, as described in the Indian pharmacopoeia. Different members of this genus, although somewhat similar in morphology, differ widely in their pharmacological and therapeutic properties. The most important species of this genus, with maximal therapeutic properties, is Zingiber officinale (garden ginger), which is often adulterated with other less-potent Zingiber sp. There is an existing demand in the herbal drug industry for an authentication system for the Zingiber sp in order to facilitate their commercial use as genuine phytoceuticals. To this end, we used amplified fragment length polymorphism (AFLP) to produce DNA fingerprints for three Zingiber species. Sixteen collections (six of Z. officinale, five of Z. montanum, and five of Z. zerumbet) were used in the study. Seven selective primer pairs were found to be useful for all the accessions. A total of 837 fragments were produced by these primer pairs. Species-specific markers were identified for all three Zingiber species (91 for Z. officinale, 82 for Z. montanum, and 55 for Z. zerumbet). The dendogram analysis generated from AFLP patterns showed that Z. montanum and Z. zerumbet are phylogenetically closer to each other than to Z. officinale. The AFLP fingerprints of the Zingiber species could be used to authenticate Zingiber sp-derived drugs and to resolve adulteration-related problems faced by the commercial users of these herbs.  相似文献   

6.
In this paper, the enhancement of thermal properties of polymer-coated silver nanoparticles by the addition of plasmid DNA is described. Nanoparticles of noble metals such as gold and silver possess specific characteristics by virtue of their quantum size effects. Therefore, noble metal nanoparticles are used for chemical sensing and biosensing applications based on their localized surface plasmon resonance absorption that can be measured in the visible region. The polyvinylpyrrolidone (PVP)-coated noble metal nanoparticles, in particular, with high dispersion ability in water, offer several advantages for sensing applications. However, some difficulties are encountered in the use of these PVP-coated noble metal nanoparticles for sensing applications due to their poor thermal properties. To improve the thermal properties of PVP-coated noble metal nanoparticles, we found that the addition of plasmid DNA to PVP-coated silver nanoparticles enhances their thermal properties due to good thermal stability of DNA. The introduction of plasmid DNA into PVP-coated silver nanoparticle dispersion enhanced the thermal properties through the formation of a complex between the nanoparticles and plasmid DNA. Furthermore, other polymers such as proteins and polyethylene glycol did not enhance the thermal properties of PVP-coated silver nanoparticles. Thus, the PVP-coated silver nanoparticle–plasmid DNA complex with enhanced thermal properties has a great potential for use in medical and drug delivery applications.  相似文献   

7.
Biosynthesis of gold nanoparticles with small size and biostability is very important and used in various biomedical applications. There are lot of reports for the synthesis of gold nanoparticles by the addition of reducing agent and stabilizing agent. In the present study we have synthesized gold nanoparticles, with a particle size ranging from 5 to 15 nm, using Zingiber officinale extract which acts both as reducing and stabilizing agent. Z. officinale extract is reported to be a more potent anti-platelet agent than aspirin. Therefore, green synthesis of gold nanoparticles with Z. officinale extract, as an alternative to chemical synthesis, is beneficial from its biological and medical applications point of view, because of its good blood biocompatibility and physiological stability. The formation and size distribution of gold nanoparticles were confirmed by dynamic light scattering (DLS), UV–vis spectrophotometer and transmission electron microscopy (TEM). Gold nanoparticles synthesized using citrate and Z. officinale extract demonstrated very low protein adsorption. Both nanoparticles were non platelet activating and non complement activating on contact with whole human blood. They also did not aggregate other blood cells, however, nanoparticles synthesised with Z. officinale extract was highly stable at physiological condition compared to citrate capped nanoparticles, which aggregated. Thus the usage of nanoparticles, synthesized with Z. officinale extract, as vectors for the applications in drug delivery, gene delivery or as biosensors, where a direct contact with blood occurs is justified.  相似文献   

8.
Modification of polymer substrates can essentially change the properties of material and thereby it allows their usage in attractive fields of material research. Laser treatment can be successfully applied for change in physico-chemical surface properties and/or for selective change of surface morphology with pattern construction. Three major applications of laser induced structures were described, cytocompatibility control, application as anti-bacterial substrate and plasmonic-based detection system. The construction of a second generation antibacterials using the synergic effect of either nanopatterning of polymers by application of a laser or noble metals deposition and consequent modification of nanostructures was presented.  相似文献   

9.
D Kim  Y Yan  CA Valencia  R Liu 《PloS one》2012,7(8):e43077
Multivalency of targeting ligands provides significantly increased binding strength towards their molecular targets. Here, we report the development of a novel heptameric targeting system, with general applications, constructed by fusing a target-binding domain with the heptamerization domain of the Archaeal RNA binding protein Sm1 through a flexible hinge peptide. The previously reported affibody molecules against EGFR and HER2, Z(EGFR) and Z(HER2), were used as target binding moieties. The fusion molecules were highly expressed in E. coli as soluble proteins and efficiently self-assembled into multimeric targeting ligands with the heptamer as the predominant form. We demonstrated that the heptameric molecules were resistant to protease-mediated digestion or heat- and SDS-induced denaturation. Surface plasmon resonance (SPR) analysis showed that both heptameric Z(EGFR) and Z(HER2) ligands have a significantly enhanced binding strength to their target receptors with a nearly 100 to 1000 fold increase relative to the monomeric ligands. Cellular binding assays showed that heptameric ligands maintained their target-binding specificities similar to the monomeric forms towards their respective receptor. The non-toxic property of each heptameric ligand was demonstrated by the cell proliferation assay. In general,, the heptamerization strategy we describe here could be applied to the facile and efficient engineering of other protein domain- or short peptide-based affinity molecules to acquire significantly improved target-binding strengths with potential applications in the targeted delivery of various imaging or therapeutic agents..  相似文献   

10.
A facile and eco‐friendly hydrothermal method was used to prepare carbon quantum dots (CQDs) using orange waste peels. The synthesized CQDs were well dispersed and the average diameter was 2.9 ± 0.5 nm. Functional group identification of the CQDs was confirmed by Fourier transform infrared spectrum analysis. Fluorescence properties of the synthesized CQDs exhibited blue emission. The fluorescence quantum yield of the CQDs was around 11.37% at an excitation wavelength of 330 nm. The higher order nonlinear optical properties were examined using a Z‐scan technique and a continuous wave laser that was operated at a wavelength of 532 nm. Results demonstrated that the synthesis of CQDs can be considered as promising for optical switching devices, bio‐scanning, and bio‐imaging for optoelectronic applications.  相似文献   

11.
The perspectives in application of carnosine, its analogs (histidine-containing dipeptides), and their derivatives as components of medicinal drugs are reviewed. These applications are based on antioxidative properties of carnosine and its analogs, their chelating activity towards transient valency metals as well as on their specific neurotransmitter functions in the brain. Combination of carnosine with other antioxidants and the use of copper or zinc complexes with histidine-containing dipeptides are considered as perspective trends in the design of new drugs.  相似文献   

12.
铜尾矿库区土壤与植物中重金属形态分析   总被引:23,自引:2,他引:21  
对铜陵铜尾矿区土壤和植物中重金属形态进行了研究.结果表明,尾矿库区种植地极端贫瘠,有机质含量仅2.6~.8 g·kg-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达809.30~1 39.4 mg·kg-1,Cd含量达3.2~6.3 mg·kg-1,达到对照土壤30~60倍.结缕草和三叶草体内重金属含量与土壤重金属交换态及有机结合态含量成正相关,与碳酸盐结合态、铁锰氧化物结合态成显著或极显著负相关,与矿物态含量相关性不显著.在两种优势植物中,Cu、Zn、Pb均以活性较低的醋酸提取态、盐酸提取态和残渣态为主;Zn在根系和茎叶中,NaCl提取态占有较大比例,而Cd均以NaCl提取态为主.  相似文献   

13.
tRNase Z     
Endonuclease tRNase Z catalyzes the generation of the mature 3' end of tRNA precursors through specific endonucleolytic cleavage. The enzyme has been characterized from organisms representative of all domains of life as well as from organelles, and the crystal structure of three bacterial enzymes has been determined. This review presents an overview of its properties and what is known about its structure, substrate recognition, cleavage site definition, and potential practical applications.  相似文献   

14.
One of the largest environmental assessment programs in the United States was initiated in the early 1990s to determine the chemical characteristics of soil located within the planned alignment for the Central Artery (I-93) / Tunnel (I-90) (CA/T) Project in Boston, Massachusetts. The primary purpose of the program was to support management of the handling and disposal of over 17 million cubic yards of soil to be excavated during construction of the CA/T Project. As part of this work, more than 8,000 soil samples were collected from more than 2,600 soil borings and analyzed for a range of chemical contaminants, including volatile organic compounds, acid/base neutral compounds, total petroleum hydrocarbons, polychlorinated biphenyls, and heavy metals. The soils encountered during the investigations exhibited properties influenced by numerous anthropogenic activities. These activities, such as vehicular emissions, historic industrial/manufacturing operations, and waterfront filling with both building rubble and dredge spoils from Boston Harbor, resulted in soils primarily contaminated with petroleum hydrocarbons and metals. As a result of this program, an extensive database of the chemical constituents present in urban soils in downtown Boston was developed. These results were primarily used to delineate the limits of contaminated areas affecting the planned construction. In addition, the database has been used by the Project to support various soil management activities, as well as by the regulatory community in developing guidelines and criteria governing the management of contaminated soils in Massachusetts. This paper focuses on the various applications of this database throughout the course of the Project, and with the additional aim of stimulating potential future applications by both the regulatory and scientific communities.  相似文献   

15.
Aims:  To compare silver and copper, metals with known antimicrobial properties, by evaluating the effects of temperature and humidity on efficacy by challenging with methicillin resistant Staphylococcus aureus (MRSA) .
Methods and Results:  Using standard methodology described in a globally used Japanese Industrial Standard, JIS Z 2801, a silver ion-containing material exhibited >5 log reduction in MRSA viability after 24 h at >90% relative humidity (RH) at 20°C and 35°C but only a <0·3 log at ∼22% RH and 20°C and no reduction at ∼22% RH and 35°C. Copper alloys demonstrated >5 log reductions under all test conditions.
Conclusions:  While the high humidity (>90% RH) and high temperature (35°C) utilized in JIS Z 2801 produce measurable efficacy in a silver ion-containing material, it showed no significant response at lower temperature and humidity levels typical of indoor environments.
Significance and Impact of the Study:  The high efficacy levels displayed by the copper alloys, at temperature and humidity levels typical of indoor environments, compared to the low efficacy of the silver ion-containing material under the same conditions, favours the use of copper alloys as antimicrobial materials in indoor environments such as hospitals.  相似文献   

16.
Eklund M  Axelsson L  Uhlén M  Nygren PA 《Proteins》2002,48(3):454-462
Three pairs of small protein domains showing binding behavior in analogy with anti-idiotypic antibodies have been selected using phage display technology. From an affibody protein library constructed by combinatorial variegation of the Fc binding surface of the 58 residue staphylococcal protein A (SPA)-derived domain Z, affibody variants have been selected to the parental SPA scaffold and to two earlier identified SPA-derived affibodies. One selected affibody (Z(SPA-1)) was shown to recognize each of the five domains of wild-type SPA with dissociation constants (K(D)) in the micromolar range. The binding of the Z(SPA-1) affibody to its parental structure was shown to involve the Fc binding site of SPA, while the Fab-binding site was not involved. Similarly, affibodies showing anti-idiotypic binding characteristics were also obtained when affibodies previously selected for binding to Taq DNA polymerase and human IgA, respectively, were used as targets for selections. The potential applications for these types of affinity pairs were exemplified by one-step protein recovery using affinity chromatography employing the specific interactions between the respective protein pair members. These experiments included the purification of the Z(SPA-1) affibody from a total Escherichia coli cell lysate using protein A-Sepharose, suggesting that this protein A/antiprotein A affinity pair could provide a basis for novel affinity gene fusion systems. The use of this type of small, robust, and easily expressed anti-idiotypic affibody pair for affinity technology applications, including self-assembled protein networks, is discussed.  相似文献   

17.
承德木本植物不同部位S及重金属含量特征的PCA分析   总被引:4,自引:4,他引:4  
应用主分量分析(PCA)和排序技术(OA)对承德市10种木本植物的S及重金属含量进行了分析.结果表明,Z1和Z2主成份值基本代表了所有元素反应的信息,累积贡献率>98%.S对Z1贡献最大(元素负荷量>0.96),Fe、Zn、Mn、Ph等对Z2有较大的影响.表明承德市S污染是最主要的;重金属污染以Zn、Fe、Mn、Ph较显着,而Cu、Ni污染不明显.不同植物器官部位污染物含量的排序表明,城市木本植物的污染物以树皮为最高,其次是枝条,叶最低.  相似文献   

18.
Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.  相似文献   

19.
Sebaleic acid (5,8-octadecadienoic acid) is the major polyunsaturated fatty acid in human sebum and skin surface lipids. The objective of the present study was to investigate the metabolism of this fatty acid by human neutrophils and to determine whether its metabolites are biologically active. Neutrophils converted sebaleic acid to four major products, which were identified by their chromatographic properties, UV absorbance, and mass spectra as 5-hydroxy-(6E,8Z)-octadecadienoic acid (5-HODE), 5-oxo-(6E,8Z)-octadecadienoic acid (5-oxo-ODE), 5S,18-dihydroxy-(6E,8Z)-octadecadienoic acid, and 5-oxo-18-hydroxy-(6E,8Z)-octadecadienoic acid. The identities of these metabolites were confirmed by comparison of their properties with those of authentic chemically synthesized standards. Both neutrophils and human keratinocytes converted 5-HODE to 5-oxo-ODE. This reaction was stimulated in neutrophils by phorbol myristate acetate and in keratinocytes by oxidative stress (t-butyl-hydroperoxide). Both treatments dramatically elevated intracellular levels of NADP(+), the cofactor required by 5-hydroxyeicosanoid dehydrogenase. In keratinocytes, this was accompanied by a rapid increase in intracellular GSSG levels, consistent with the involvement of glutathione peroxidase. 5-Oxo-ODE stimulated calcium mobilization in human neutrophils and induced desensitization to 5-oxo-6,8,11,14-eicosatetraenoic acid but not leukotriene B(4), indicating that this effect was mediated by the OXE receptor. 5-Oxo-ODE and its 8-trans isomer were equipotent with 5-oxo-6,8,11,14-eicosatetraenoic acid in stimulating actin polymerization and chemotaxis in human neutrophils, whereas 5-HODE, 5-oxo-18-hydroxy-(6E,8Z)-octadecadienoic acid, and 5S,18-dihydroxy-(6E,8Z)-octadecadienoic acid were much less active. We conclude that neutrophil 5-lipoxygenase converts sebaleic acid to 5-HODE, which can be further metabolized to 5-oxo-ODE by 5-hydroxyeicosanoid dehydrogenase in neutrophils and keratinocytes. Because of its chemoattractant properties, sebum-derived 5-oxo-ODE could be involved in neutrophil infiltration in inflammatory skin diseases.  相似文献   

20.
Transition metals and their oxide materials have been widely employed to fabricate superhydrophobic surfaces,not onlybecause of their surface topography with controllable microstructures leading to water-repellence,diverse adhesion even tunable wettability,but also due to a variety of special properties like optical performance,magnetism,anti-bacterial,transparency and so on.At the meantime,biomimetic superhydrophobic surfaces have attracted great interest from fabricating hierarchical micro-/nano-structures inspired by nature to imitate creature's properties and many potential applications,including self-cleaning,antifogging,antireflection,low drag and great stability and durability.In this review,natural surfaces and biomimetic materials with special wettability are introduced by classification according to the similar microstructure of morphology,like array structure,sheet overlapped structure,high density hairs and seta shaped structure.Not only do we exhibit their special performances,but also try to find out the true reasons behind the phenomenon.Then,the recent progress of a series of superhydrophobic transition mental and their oxide materials,including TiO2,ZnO,Fe3O4,CuO,Ag,Au and so on,is presented with a focus on fabricating methods,microstructures,wettability,and other properties.As followed,these superhydro-phobic surfaces can be applied in many fields,such as oil/water separation,self-cleaning,photo-controlled reversible wettability,surface-enhanced Raman scattering,antibacterial,anticorrosion,and synthesis of various applications.However,few of them have been applied in practical life.Hence,we discuss the remaining challenges at present and the development tendency in future at the end of this article.This review aims to present recent development of transition metals and their oxides applied in biomimetic superhydrophobic surfaces about fabrication,microstructure,water repellence,various properties,and potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号