首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phoshate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.  相似文献   

2.
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4–3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7–13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6–6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.  相似文献   

3.
4.
5.
The aim of this study was to investigate the impact of prolonged storage at 4 °C on survival of cat preantral follicles (PAFs) pre- and post-vitrification. Ovaries were obtained from 12 queens and transported at 4 ºC within 2–6 h. Parts of the ovaries were stored for an additional 24 h or 72 h. The ovarian cortex was dissected, analyzed for viability (neutral red - NR) and morphology (histology - HE and ultrastructural analysis by TEM) and vitrified. We used 2 mm biopsy punches to obtain equal size pieces as the experimental units. After NR assessment, each sample was fixed and embedded in paraffin for HE staining to determine the number of morphologically intact follicles. Another 2 mm piece of ovary was subjected to TEM. NR viability assessment and HE results showed a similar tendency with PAF survival postvitrification even after prolonged cooling at 24 h and 72 h. With TEM, integrity of mitochondria, plasma and basal membranes as well as the presence of pre-granulose cells of PAFs were documented postvitrification for the control group and 24 h prolonged storage group, but not after 72 h storage. Our results showed that cat PAFs can survive prolonged storage followed by vitrification. The described set of techniques are applicable towards creating a gamete bank for endangered feline species.  相似文献   

6.
7.
8.
Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix‐assisted laser desorption/ionization time‐of‐flight spectrometry (MALDI‐TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.  相似文献   

9.
Transposable elements (TEs) are widespread in insect's genomes. However, there are wide differences in the proportion of the total DNA content occupied by these repetitive sequences in different species. We have analyzed the TEs present in R. prolixus (vector of the Chagas disease) and showed that 3.0% of this genome is occupied by Class II TEs, belonging mainly to the Tc1-mariner superfamily (1.65%) and MITEs (1.84%). Interestingly, most of this genomic content is due to the expansion of two subfamilies belonging to: irritans himar, a well characterized subfamily of mariners, and prolixus1, one of the two novel subfamilies here described. The high amount of sequences in these subfamilies suggests that bursts of transposition occurred during the life cycle of this family. In an attempt to characterize these elements, we performed an in silico analysis of the sequences corresponding to the DDD/E domain of the transposase gene. We performed an evolutionary analysis including network and Bayesian coalescent-based methods in order to infer the dynamics of the amplification, as well as to estimate the time of the bursts identified in these subfamilies. Given our data, we hypothesized that the TE expansions occurred around the time of speciation of R. prolixus around 1.4 mya. This suggestion lays on the “Transposon Model” of TE evolution, in which the members of a TE population that are replicative active are present at multiple loci in the genome, but their replicative potential varies, and of the “Life Cycle Model” that states that when present-day TEs have been involved in amplification bursts, they share an ancestral copy that dates back to this initial amplification.  相似文献   

10.
11.
C-type lectins (CTLs) are a large family of Ca2+-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca2+-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.  相似文献   

12.
13.
14.
15.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   

16.
The interleukin 1 receptor-associated kinase 4 (IRAK4) is an essential factor for TLR-mediated activation of the host's immune functions subsequent to pathogen contact. We have characterized the respective cDNA and gene sequences from three salmonid species, salmon, rainbow trout and maraena whitefish. The gene from salmon is structured into eleven exons, as is the mammalian homologue, while exons have been fused in the genes from the two other salmonid species. Rainbow trout expresses also a pseudogene at low levels. Its basic structure resembles more closely the primordial gene than the functional copy does. The N-terminal death domain and the C-terminal protein kinase domain of the factors are better conserved throughout evolution than the linker domain. The deduced amino acid sequences of the factors from all three species group together in an evolutionary tree of IRAK4 factors. Scrutinizing expression and function of IRAK4 from rainbow trout, we found its highest expression in head kidney and spleen and lowest expression in muscle tissue. Infecting fish with Aeromonas salmonicida did not modulate its expression during 72 h of observation. Expression of a GFP-tagged trout IRAK4 revealed, expectedly, its cytoplasmic localization in human HEK-293 cells. However, this factor significantly quenched in a dose-dependent fashion not only the pathogen-induced stimulation of NF-κB factors in the HEK-293 reconstitution system of TLR2 signaling, but also the basal NF-κB levels in unstimulated control cells. Our data unexpectedly imply that IRAK4 is involved in establishing threshold levels of active NF-κB in resting cells.  相似文献   

17.
PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α’s N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α’s with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.  相似文献   

18.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

19.
Limited information is available on how fruit crops respond to moderate drought stress. In the present study, we investigated how Malus baccata (L.) Borkh. a drought-tolerant genotype apple rootstock, responds to moderate drought stress. Our results for enzyme activity under moderate drought stress indicated that M. baccata produces osmosis-regulating substances. The phosphoproteins in the leaves were analyzed using iTRAQ technology. In total, 269 unique phosphopeptides, 304 phosphorylated sites, and 219 phosphoproteins were quantitatively analyzed in M. baccata. Furthermore, we identified 46 phosphoproteins in M. baccata whose phosphorylation levels significantly changed (PLSC). Among them, 22 PLSC phosphoproteins were found to be involved in metabolic processes that included carbon and nitrogen metabolism. This suggests that a systematic response pattern was generated in M. baccata and moderate drought stress resulted in a new homeostasis of carbon and nitrogen metabolism. The 14 differentially expressed mRNAs encoding phosphoproteins were analyzed by quantitative real-time PCR. Our study is the first to analyze the phosphoproteome of M. baccata and provides insights into the partial molecular regulatory mechanisms of M. baccata under moderate drought stress.  相似文献   

20.
Insect herbivores recognize non-volatile compounds in plants to direct their feeding behavior. Gustatory receptors (Gr) appear to be required for nutrient recognition by gustatory organs in the mouthparts of insects. Gr10 is expressed in Bombyx mori (BmGr10) mouthparts such as maxillary galea, maxillary palp, and labrum. BmGr10 is predicted to function in sugar recognition; however, the precise biochemical function remains obscure. Larvae of B. mori are monophagous feeders able to find and feed on mulberry leaves. Soluble mulberry leaf extract contains sucrose, glucose, fructose, and myo-inositol. In this study, we identified BmGr10 as an inositol receptor using electrophysiological analysis with the Xenopus oocyte expression system and Ca2+ imaging techniques using mammalian cells. These results demonstrated that Xenopus oocytes or HEK293T cells expressing BmGr10 specifically respond to myo-inositol and epi-inositol but do not respond to any mono-, di-, or tri-saccharides or to some sugar alcohols. These inositols caused Ca2+ and Na+ influxes into the cytoplasm independently of a G protein-mediated signaling cascade, indicating that BmGr10 is a ligand-gated cation channel. Overall, BmGr10 plays an important role in the myo-inositol recognition required for B. mori larval feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号