首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposed a method to quantify direct and indirect effects of the joint torque inputs in the speed-generating mechanism of a swinging motion. Linear and angular accelerations of all segments within a multi-linked system can be expressed as the sum of contributions from a joint torque term, gravitational force term and motion-dependent term (MDT), where the MDT is a nonlinear term consisting of centrifugal force, Coriolis force and gyroscopic effect moment components. Direct effects result from angular accelerations induced by a joint torque at a given instant, whereas indirect effects arise through the MDT induced by joint torques exerted in the past. These two effects were quantified for the kicking-side leg during a rugby place kick. The MDT was the largest contributor to the foot centre of gravity (CG)’s speed at ball contact. Of the factors responsible for generating the MDT, the direct and indirect effects of the hip flexion-extension torque during both the flight phase (from the final kicking foot take-off to support foot contact) and the subsequent support phase (from support foot contact to ball contact) were important contributors to the foot CG’s speed at ball contact. The indirect effect of the ankle plantar-dorsal flexion torque and the direct effect of the knee flexion-extension torque during the support phase showed the largest positive and negative contributions to the foot CG’s speed at ball contact, respectively. The proposed method allows the identification of which individual joint torque axes are crucial and the timings of joint torque exertion that are used to generate a high speed of the distal point of a multi-linked system.  相似文献   

2.
In many sports, athletes perform motor tasks that simultaneously require both speed and accuracy for success, such as kicking a ball. Because of the biomechanical trade-off between speed and accuracy, athletes must balance these competing demands. Modelling the optimal compromise between speed and accuracy requires one to quantify how task speed affects the dispersion around a target, a level of experimental detail not previously addressed. Using soccer penalties as a system, we measured two-dimensional kicking error over a range of speeds, target heights, and kicking techniques. Twenty experienced soccer players executed a total of 8466 kicks at two targets (high and low). Players kicked with the side of their foot or the instep at ball speeds ranging from 40% to 100% of their maximum. The inaccuracy of kicks was measured in horizontal and vertical dimensions. For both horizontal and vertical inaccuracy, variance increased as a power function of speed, whose parameter values depended on the combination of kicking technique and target height. Kicking precision was greater when aiming at a low target compared to a high target. Side-foot kicks were more accurate than instep kicks. The centre of the dispersion of shots shifted as a function of speed. An analysis of the covariance between horizontal and vertical error revealed right-footed kickers tended to miss below and to the left of the target or above and to the right, while left-footed kickers tended along the reflected axis. Our analysis provides relationships needed to model the optimal strategy for penalty kickers.  相似文献   

3.
With the aim of comparing kinematic and neuromuscular parameters of Bandal Chagui kicks between 7 elite and 7 subelite taekwondo athletes, nine Bandal Chaguis were performed at maximal effort in a selective reaction time design, simulating the frequency of kicks observed in taekwondo competitions. Linear and angular leg velocities were recorded through 3D motion capture system. Ground reaction forces (GRF) were evaluated by a force platform, and surface electromyographic (sEMG) signals were evaluated in the vastus lateralis, biceps femoris, rectus femoris, tensor fasciae lata, adductor magnus, gluteus maximus, gluteus medius, and gastrocnemius lateralis muscles of the kicking leg. sEMG data were processed to obtain the cocontraction indices (CI) of antagonist vs. overall (agonist and antagonist) muscle activity. CI was measured for the hip and knee, in flexion and extension, and for hip abduction. Premotor, reaction (kinetic and kinematic), and kicking times were evaluated. Timing parameters, except kinetic reaction time, were faster in elite athletes. Furthermore, CI and angular velocity during knee extension, foot and knee linear velocity, and horizontal GRF were significantly higher in elite than in subelite athletes. In conclusion, selected biomechanical parameters of Bandal Chagui appear to be useful in controlling the training status of the kick and in orienting the training goal of black belt competitors.  相似文献   

4.
Risk factors in throwing factors associated to little league elbow have not been adequately explored. Whether these factors also affect the players' performance is also important to elucidate while modifying throwing pattern to reduce injury. The purpose of this study was to compare the differences in throwing kinematics between youth baseball players with or without a history of medial elbow pain (MEP) and to determine the relationship between their throwing kinematics and ball speed. Fifteen players with previous MEP were matched with 15 healthy players by age, height and weight. Throwing kinematics was recorded by an electromagnetic motion analysis system. A foot switch was used for determining foot off and foot contact. Ball speed was recorded with a sports radar gun. The group with a history of MEP demonstrated less elbow flexion angle at maximum shoulder external rotation and had more lateral trunk tilt at ball release compared to the healthy group. The group with a history of MEP also had faster maximum upper torso rotation velocities, maximum pelvis rotation velocities and ball speeds. Maximum shoulder external rotation angle (r = 0.458, P = 0.011), elbow flexion angle at maximum shoulder external rotation (r = -0.637, P = 0.0003), and maximum upper torso rotation velocity (r = 0.562, P = 0.002) had significant correlation with ball speed. Findings of this study can be treated as elbow injury-related factors that clinicians and coaches can attend to when taking care of youth  相似文献   

5.
This investigation examined the effect of torso rotational strength on angular hip (AHV), angular shoulder (ASV), linear bat-end (BEV), and hand velocities (HV) and 3 repetition maximum (RM) torso rotational and sequential hip-torso-arm rotational strength (medicine ball hitter's throw) in high school baseball players (age 15.4 +/- 1.2 y). Participants were randomly assigned to 1 of 2 training groups. Group 1 (n = 24) and group 2 (n = 25) both performed a stepwise periodized resistance exercise program and took 100 swings a day, 3 days a week, for 12 weeks with their normal game bat. Group 2 performed additional rotational and full-body medicine ball exercises 3 days a week for 12 weeks. A 3RM parallel squat and bench press were measured at 0 and after 4, 8, and 12 weeks. Participants were pre- and posttested for 3RM dominant and nondominant torso rotational strength and medicine ball hitter's throw. Angular hip velocities, ASV, BEV, and HV were recorded pre- and posttraining by a motion capture system that identified and digitally processed reflective markers attached to each participant's bat and body. Groups 1 and 2 increased (p < or = 0.05) BEV (3.6 and 6.4%), HV (2.6 and 3.6%), 3RM dominant (10.5 and 17.1%) and nondominant (10.2 and 18.3%) torso rotational strength, and medicine ball hitter's throw (3.0 and 10.6%) after 12 weeks. Group 2 increased AHV (6.8%) and ASV (8.8%). Group 2 showed greater improvements in BEV, AHV, ASV, 3RM dominant and nondominant torso rotational strength, and medicine ball hitter's throw than group 1. Groups 1 and 2 increased predicted 1RM parallel squat (29.7 and 26.7%) and bench press (17.2 and 16.7%) strength after 12 weeks. These data indicate that performing additional rotational medicine ball exercises 2 days a week for 12 weeks statistically improves baseball performance variables.  相似文献   

6.
 The purpose of this study was to provide objective information on the involvement of different abdominal and hip flexor muscles during various types of common training exercises used in rehabilitation and sport. Six healthy male subjects performed altogether 38 different static and dynamic training exercises – trunk and hip flexion sit-ups, with various combinations of leg position and support, and bi- and unilateral leg lifts. Myoelectric activity was recorded with surface electrodes from the rectus abdominis, obliquus externus, obliquus internus, rectus femoris, and sartorius muscles and with indwelling fine-wire electrodes from the iliacus muscle. The mean electromyogram amplitude, normalised to the highest observed value, was compared between static and dynamic exercises separately. The hip flexors were highly activated only in exercises involving hip flexion, either lifting the whole upper body or the legs. In contrast, the abdominal muscles showed marked activation both during trunk and hip flexion sit-ups. In hip flexion sit-ups, flexed and supported legs increased hip flexor activation, whereas such modifications did not generally alter the activation level of the abdominals. Bilateral, but not unilateral, leg lifts required activation of abdominal muscles. In trunk flexion sit-ups an increased activation of the abdominal muscles was observed with increased flexion angle, whereas the opposite was true for hip flexion sit-ups. Bilateral leg lifts resulted in higher activity levels than hip flexion sit-ups for the iliacus and sartorius muscles, while the opposite was true for rectus femoris muscles. These data could serve as a basis for improving the design and specificity of test and training exercises. Accepted: 12 August 1996  相似文献   

7.
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.  相似文献   

8.
When humans hopin place or run forward, leg stiffness is increased to offsetreductions in surface stiffness, allowing the global kinematics andmechanics to remain the same on all surfaces. The purpose of thepresent study was to determine the mechanism for adjusting legstiffness. Seven subjects hopped in place on surfaces of differentstiffnesses (23-35,000 kN/m) while force platform, kinematic, andelectromyographic data were collected. Leg stiffness approximatelydoubled between the most stiff surface and the least stiff surface.Over the same range of surfaces, ankle torsional stiffness increased1.75-fold, and the knee became more extended at the time of touchdown(2.81 vs. 2.65 rad). We used a computer simulation to examine thesensitivity of leg stiffness to the observed changes in ankle stiffnessand touchdown knee angle. Our model consisted of four segments (foot,shank, thigh, head-arms-trunk) interconnected by three torsionalsprings (ankle, knee, hip). In the model, an increase in anklestiffness 1.75-fold caused leg stiffness to increase 1.7-fold. A changein touchdown knee angle as observed in the subjects caused legstiffness to increase 1.3-fold. Thus both joint stiffness and limbgeometry adjustments are important in adjusting leg stiffness to allow similar hopping on different surfaces.

  相似文献   

9.
People suffering from locomotor impairment find turning manoeuvres more challenging than straight-ahead walking. Turning manoeuvres are estimated to comprise a substantial proportion of steps taken daily, yet research has predominantly focused on straight-line walking, meaning that the basic kinetic, kinematic and foot pressure adaptations required for turning are not as well understood. We investigated how healthy subjects adapt their locomotion patterns to accommodate walking along a gently curved trajectory (radius 2.75 m). Twenty healthy adult participants performed walking tasks at self-selected speeds along straight and curved pathways. For the first time for this mode of turning, plantar pressures were recorded using insole foot pressure sensors while participants’ movements were simultaneously tracked using marker-based 3D motion capture. During the steady-state strides at the apex of the turn, the mean operating point of the inside ankle shifted by 1 degree towards dorsiflexion and that for the outside ankle shifted towards plantarflexion. The largest change in relative joint angle range was an increase in hip rotation in the inside leg (>60%). In addition, the inside foot was subject to a prolonged stance phase and a 10% increase in vertical force in the posteromedial section of the foot compared to straight-line walking. Most of the mechanical change required was therefore generated by the inside leg with hip rotation being a major driver of the gentle turn. This study provides new insight into healthy gait during gentle turns and may help us to understand the mechanics behind some forms of impairment.  相似文献   

10.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, the main symptoms of which are hypertonicity and difficulties emerging during performance of stepping movements due to increased muscle stiffness. Biomechanical (stiffness) and electrophysiological (shortening reaction, SR) characteristics of hip and shank muscles were examined in 25 patients with mild and moderate stages of PD (1 to 3 of Hoehn and Yahr Rating Scale, 61 ± 9 years) and 22 age-matched healthy controls in unloading leg conditions during passive flexion/extension of hip, knee, and ankle joints, as well as the changes in the tonic state of muscles under the influence of levodopa. The data obtained were compared with similar findings in healthy subjects. Essentially greater stiffness in all leg muscle groups (except foot extensors) was observed in patients with PD as compared to the healthy subjects. In patients with PD, SR values in hip and shank extensors as well as in foot flexors and extensors were essentially greater then in the healthy subjects. The medicine essentially reduced the stiffness of hip flexors and knee flexors and extensors. The SR persisted, although the frequency of its occurrence decreased in half of studied muscles, and a significant decrease in the SR value was observed in foot extensors. The medicine had no marked effect on the SR in the proximal muscles. Thus, the increased muscle stiffness in patients with PD manifests itself as distorted reactions to external disturbances and increased reflectory reactions of muscles.  相似文献   

11.
This study aims to analyze the difference in biomechanical properties of football players at different levels when kicking the football with the inner edge of the instep. Before the experiment, ten football players were selected; five were higher than the national level (group A), and the other five players were lower than the national level II (group B). During the experiment, the motion process was captured by a high-speed camera for biomechanical analysis. It was found that in group A, the thigh and leg swung in less time and larger amplitude, the acceleration of backswing and forward swing of the leg was larger, and the angular velocity of forward swing was also larger. At the moment of touching the ball, in the sagittal plane, the ankle joint angle and angular velocity of group A were larger than those of group B (P < 0.05). In conclusion, the high-level athletes can complete the high-quality kicking through a larger swing amplitude and speed of the kicking leg. In the training process, the athletes should pay attention to the speed and strength of the kicking leg to improve the kicking level.  相似文献   

12.
The objective of this study was to investigate the factors affecting ball velocity at the final instant of the impact phase (t1) in full instep soccer kicking. Five experienced male university soccer players performed maximal full instep kicks for various foot impact points using a one-step approach. The kicking motions were captured two dimensionally by a high-speed camera at 2,500 fps. The theoretical equation of the ball velocity at t1 given in the article was derived based on the impact dynamics theory. The validity of the theoretical equation was verified by comparing the theoretical relationship between the impact point and the ball velocity with the experimental one. Using this theoretical equation, the relationship between the impact point and the ball velocity was simulated. The simulation results indicated that the ball velocity is more strongly affected by the foot velocity at the initial instant of the impact phase than by other factors. The simulation results also indicated that decreasing the ankle joint reaction force during ball impact shifts the impact point that produces the greatest ball velocity to the toe side and decreasing the ankle joint torque during ball impact shifts the impact point that produces the greatest ball velocity to the ankle side.  相似文献   

13.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

14.
The pulley system in the flexor sheath of the long toe of the white leghorn chicken foot was studied. Histologic sections of the pulleys were prepared, and the mechanics of flexion of the long toe was analyzed. An annular flexor pulley that attached to the third phalanx was identified. This pulley, which has not been described previously, was found to be essential for proper flexion of the third interphalangeal joint.  相似文献   

15.
Approximately 90% of hip fractures in older adults result from falls, mostly from landing on or near the hip. A three-dimensional, 11-segment, forward dynamic biomechanical model was developed to investigate whether segment movement strategies prior to impact can affect the impact forces resulting from a lateral fall. Four different pre-impact movement strategies, with and without using the ipsilateral arm to break the fall, were implemented using paired actuators representing the agonist and antagonist muscles acting about each joint. Proportional-derivative feedback controller controlled joint angles and velocities so as to minimize risk of fracture at any of the impact sites. It was hypothesized that (a) the use of active knee, hip and arm joint torques during the pre-contact phase affects neither the whole body kinetic energy at impact nor the peak impact forces on the knee, hip or shoulder and (b) muscle strength and reaction time do not substantially affect peak impact forces. The results demonstrate that, compared with falling laterally as a rigid body, an arrest strategy that combines flexion of the lower extremities, ground contact with the side of the lower leg along with an axial rotation to progressively present the posterolateral aspects of the thigh, pelvis and then torso, can reduce the peak hip impact force by up to 56%. A 30% decline in muscle strength did not markedly affect the effectiveness of that fall strategy. However, a 300-ms delay in implementing the movement strategy inevitably caused hip impact forces consistent with fracture unless the arm was used to break the fall prior to the hip impact.  相似文献   

16.
The possibility of initiating an involuntary walking rhythm in a suspended human leg by electrical stimulation was studied. The subjects lay on the side with one leg suspended in an exoskeleton allowing horizontal rotation in three joints: the hip, knee, and ankle ones. To evoke involuntary walking of the suspended leg, two methods were used: continuous vibration of the quadriceps muscle of the hip and electrical stimulation of the cutaneous nerves innervating the foot of the immobile leg. The hip and ankle were involved in the involuntary movements, with reciprocal bursts of electromyographic activity being also observed in the antagonistic muscles of the hip. The application of an external load (4 N or 8 N) to the foot caused a perceptible intensification of its movements. An additional weight (0.5 kg) or a rubber band wrapped around the foot caused no substantial change in the pattern of stimulated walking. Electrical stimulation is an effective means of activating walking movements, and their characteristics confirm the assumption that the walking rhythm is of central origin. Additional afferentation from the sole’s receptors plays an important role in the modulation of the induced movements and the modification of the general walking pattern under the conditions of muscle unloading.  相似文献   

17.
The purpose of this study was to determine the effects of an 8-week golf-specific exercise program on physical characteristics, swing mechanics, and golf performance. Fifteen trained male golfers (47.2 +/- 11.4 years, 178.8 +/- 5.8 cm, 86.7 +/- 9.0 kg, and 12.1 +/- 6.4 U.S. Golf Association handicap) were recruited. Trained golfers was defined operationally as golfers who play a round of golf at least 2-3 times per week and practice at the driving range at least 2-3 times per week during the regular golf season. Subjects performed a golf-specific conditioning program 3-4 times per week for 8 weeks during the off-season in order to enhance physical characteristics. Pre- and posttraining testing of participants included assessments of strength (torso, shoulder, and hip), flexibility, balance, swing mechanics, and golf performance. Following training, torso rotational strength and hip abduction strength were improved significantly (p < 0.05). Torso, shoulder, and hip flexibility improved significantly in all flexibility measurements taken (p < 0.05). Balance was improved significantly in 3 of 12 measurements, with the remainder of the variables demonstrating a nonsignificant trend for improvement. The magnitude of upper-torso axial rotation was decreased at the acceleration (p = 0.015) and impact points (p =0.043), and the magnitude of pelvis axial rotation was decreased at the top (p = 0.031) and acceleration points (p = 0.036). Upper-torso axial rotational velocity was increased significantly at the acceleration point of the golf swing (p = 0.009). Subjects increased average club velocity (p = 0.001), ball velocity (p = 0.001), carry distance (p = 0.001), and total distance (p = 0.001). These results indicate that a golf-specific exercise program improves strength, flexibility, and balance in golfers. These improvements result in increased upper-torso axial rotational velocity, which results in increased club head velocity, ball velocity, and driving distance.  相似文献   

18.
When the foot impacts the ground in running, large forces and loading rates can arise that may contribute to the development of overuse injuries. Investigating which biomechanical factors contribute to these impact loads and loading rates in running could assist clinicians in developing strategies to reduce these loads. Therefore, the goals of our work were to determine variables that predict the magnitude of the impact peak and loading rate during running, as well as to investigate how modulation of knee and hip muscle activity affects these variables. Instrumented gait analysis was conducted on 48 healthy subjects running at 3.3 m/s on a treadmill. The top four predictors of loading rate and impact peak were determined using a stepwise multiple linear regression model. Forward dynamics was performed using a whole body musculoskeletal model to determine how increased muscle activity of the knee flexors, knee extensors, hip flexors, and hip extensors during swing altered the predictors of loading rate and impact peak. A smaller impact peak was associated with a larger downward acceleration of the foot, a higher positioned foot, and a decreased downward velocity of the shank at mid-swing while a lower loading rate was associated with a higher positioned thigh at mid-swing. Our results suggest that an alternative to forefoot striking may be increased hip flexor activity during swing to alter these mid-swing kinematics and ultimately decrease the leg's velocity at landing. The decreased velocity would decrease the downward momentum of the leg and hence require a smaller force at impact.  相似文献   

19.
The mobility of above-knee amputees (A/K) is limited, in part, due to the performance of A/K prostheses during the stance phase. Currently stance phase control of most conventional A/K prostheses can only be achieved through leg alignment and choice of the SACH (Solid Ankle Cushioned Heel) foot. This paper examines the role of the knee controller in relation to a SACH foot during the stance phase of level walking. The three-dimensional gait mechanics were measured under two stance phase conditions. In the first set of trials, the amputee used a prosthesis with a conventional knee controller that allowed the amputee to maintain the knee joint in full extension during the stance phase. In the second set of trials, the prosthetic knee, during stance, echoed the modified kinematics of the amputee's sound (intact) knee that had been recorded during the previous sound stance phase. Analysis and interpretation of the data indicate the following: (1) SACH foot design can strongly influence the walking mechanics independent of the knee controller; (2) knee controller design and SACH foot design are mutually interdependent; and (3) normal kinematics imposed on the prosthetic knee does not necessarily produce normal hip kinematics (e.g. reduce the abnormal rise in the prosthetic side hip trajectory). Future research is necessary to explore and exploit the interdependency of prosthetic knee control and foot design.  相似文献   

20.
Kinesin, an essential motor protein that moves intracellular cargo along microtubules, walks like a person. When we walk, our feet exchange roles with each step, one moving and one remaining stationary. The moving foot travels twice as far as our torso during a single step, and our body alternates between two configurations (left vs. right leg leading). Recent work shows that kinesin shares all three of these hallmarks of bipedal walking. The challenge now is to determine how the gait of this lilliputian biped is coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号