首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It is well known that mechanical forces acting within the soft tissues of the foot can contribute to the formation of neuropathic ulcers in people with diabetes. Presently, only surface measurements of plantar pressure are used clinically to estimate risk status due to mechanical loading. It is currently not known how surface measurements relate to the three-dimensional (3-D) internal stress/strain state of the foot. This article describes the development of a foot-loading device that allows for the direct observation of the internal deformation of foot tissues under known forces. Ground reaction forces and plantar pressure distributions during normal walking were measured in ten healthy young adults. One instant in the gait cycle, when pressure under the metatarsal heads reached a peak, was extracted for simulation in an MR imager. T1-weighted 3-D gradient echo MRI sets were collected as the simulated walking ground reaction force was incrementally applied to the foot by the novel foot-loading device. The sub-metatarsal head soft-tissue thickness decreased rapidly at first and then reached a plateau. Peak plantar pressure measurements collected within the loading device (161+/-75kPa) were lower in magnitude and less focal than pressures measured during walking (492+/-91kPa). This finding implies that although the device successfully applied full peak walking ground reaction forces to the foot, they were not distributed in the same manner as during walking. Although not representative of gait, the data collected from this in vivo mechanical test are suitable for determination of foot tissue material properties or, when combined with finite element modeling, to examine the relationship between surface loading and internal stress.  相似文献   

2.
The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle–foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935–2.258 for ground reaction forces, 1.528–2.727 for plantar flexor muscles and 4.84–11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.  相似文献   

3.
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.  相似文献   

4.
《Journal of biomechanics》2014,47(16):3799-3806
Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2±157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3±124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0±272.6 kPa) but smaller peak braking shear stress (184.8±181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions.  相似文献   

5.
Forward dynamic simulations of a toe-rise task were developed to explore the outcomes of plantar fasciotomy, a surgery commonly performed to relieve heel pain. The specific objectives of this study were to develop such a simulation, validate its predictions, and simulate rising on toes using a model from which the plantar fascia had been removed. Root-mean squared differences between the intact model and measurements of healthy subjects were found to be 0.009 body weights (BW) and 0.055 BW for the horizontal and vertical ground reaction forces and 7.1 mm, 11.3 mm, and 0.48 deg for the horizontal, vertical and rotational positions of the pelvis. Simulated plantar fasciotomy increased passive arch torques by 7.4%, increased metatarsal head contact forces by 18%, and resulted in greater toe flexor activity. These simulations may explain the mechanisms behind plantar fasciotomy complications when patients perform activities that require loading of the plantarflexors and the longitudinal arch.  相似文献   

6.
The plantar soft tissue is the primary means of physical interaction between a person and the ground during locomotion. Dynamic loads greater than body weight are borne across the entire plantar surface during each step. However, most testing of these tissues has concentrated on the structural properties of the heel pad. The purpose of this study was to determine the material properties of the plantar soft tissue from six locations beneath: the great toe (subhallucal), the 1st, 3rd and 5th metatarsal heads (submetatarsal), the lateral midfoot (lateral submidfoot) and the heel (subcalcaneal). We obtained specimens from these locations from 11 young, non-diabetic donors; the tissue was cut into 2 cm x 2 cm blocks and the skin was removed. Stress relaxation experiments were conducted and the data were fit using the quasi-linear viscoelastic (QLV) theory. To determine tissue modulus, energy loss and the effect of test frequency, we also conducted displacement controlled triangle waves at five frequencies ranging from 0.005 to 10 Hz. The subcalcaneal tissue was found to have an increased relaxation time compared to the other areas. The subcalcaneal tissue was also found to have an increased modulus and decreased energy loss compared to the other areas. Across all areas, the modulus and energy loss increased for the 1 and 10 Hz tests compared to the other testing frequencies. This study is the first to generate material properties for all areas of the plantar soft tissue, demonstrating that the subcalcaneal tissue is different than the other plantar soft tissue areas. These data will have implications for foot computational modeling efforts and potentially for orthotic pressure reduction devices.  相似文献   

7.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

8.
This study presented a method to estimate the complete ground reaction forces from pressure insoles in walking. Five male subjects performed 10 walking trials in a laboratory. The complete ground reaction forces were collected during a right foot stride by a force plate at 1000Hz. Simultaneous plantar pressure data were collected at 100Hz by a pressure insole system with 99 sensors covering the whole plantar area. Stepwise linear regressions were performed to individually reconstruct the complete ground reaction forces in three directions from the 99 individual pressure data until redundancy among the predictors occurred. An additional linear regression was performed to reconstruct the vertical ground reaction force by the sum of the value of the 99 pressure sensors. Five other subjects performed the same walking test for validation. Estimated ground reaction forces in three directions were calculated with the developed regression models, and were compared with the real data recorded from force plate. Accuracy was represented by the correlation coefficient and the root mean square error. Results showed very good correlation in anterior-posterior (0.928) and vertical (0.989) directions, and reasonable correlation in medial-lateral direction (0.719). The root mean square error was about 12%, 5% and 28% of the peak recorded value. Future studies should aim to generalize the methods or to establish specific methods to other subjects, patients, motions, footwear and floor conditions. The method gives an extra option to study an estimation of the complete ground reaction forces in any environment without the constraints from the number and location of force plates.  相似文献   

9.
We present measurements of the bulk Young's moduli of early chick embryos at Hamburger-Hamilton stage 10. Using a micropipette probe with a force constant k ~0.025 N/m, we applied a known force in the plane of the embryo in the anterior-posterior direction and imaged the resulting tissue displacements. We used a two-dimensional finite-element simulation method to model the embryo as four concentric elliptical elastic regions with dimensions matching the embryo's morphology. By correlating the measured tissue displacements to the displacements calculated from the in-plane force and the model, we obtained the approximate short time linear-elastic Young's moduli: 2.4 ± 0.1 kPa for the midline structures (notocord, neural tube, and somites), 1.3 ± 0.1 kPa for the intermediate nearly acellular region between the somites and area pellucida, 2.1 ± 0.1 kPa for the area pellucida, and 11.9 ± 0.8 kPa for the area opaca.  相似文献   

10.
An optic fiber (? 0.5 mm) was utilized for the study of Achilles tendon forces (ATF) in eight volunteers who walked over a 10 m force platform at three speeds (1.1 ± 0.1 m × s−1, 1.5 ± 0.1 m × s−1 and 1.8 ± 0.2 m × s−1). The presented ATF-time curves showed great intersubject variation in magnitudes of the sudden release of force after initial contact and in the peak ATF's (1430 ± 500 N). This intersubject variation in the peak force decreased only by 4% when cross-sectional area of the tendon was considered. Measured ground reaction forces and plantar pressures confirmed that the subjects walked quite normally during recordings. The peak ATF was found to be rather insensitive to speed in contrast to the rate of ATF development which increased 32% ( p < 0.5) from slow to fast walking speed. It is concluded that the optic fiber technique can be applied to study loading of the musculo-tendinous complex during normal locomotion such as walking. Accepted: 13 October 1997  相似文献   

11.
Forefoot strike becomes popular among runners because it facilitates better impact attenuation. However, forefoot strike may overload the plantar fascia and impose risk of plantar fasciitis. This study aimed to examine and compare the foot arch deformation and plantar fascia tension between different foot strike techniques in running using a computational modelling approach. A three-dimensional finite element foot model was reconstructed from the MRI of a healthy runner. The foot model included twenty bones, bulk soft tissue, ligaments, tendons, and plantar fascia. The time-series data of segmental kinematics, foot muscle force, and ankle joint reaction force were derived from a musculoskeletal model of the same participant based on the motion capture analysis and input as the boundary conditions for the finite element analysis. Rearfoot strike and forefoot strike running were simulated using a dynamic explicit solver. The results showed that, compared to rearfoot strike, forefoot strike reduced the foot arch height by 9.12% and increased the medial longitudinal arch angle by 2.06%. Forefoot strike also increased the plantar connective tissues stress by 18.28–200.11% and increased the plantar fascia tensile force by 18.71–109.10%. Although it is currently difficult to estimate the threshold value of stress or force that results in injury, forefoot strike runners appeared to be more vulnerable to plantar fasciitis.  相似文献   

12.
A model of the human triceps surae muscle-tendon complex applied to jumping   总被引:1,自引:0,他引:1  
The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m. soleus and m. gastrocnemius. A model was developed of m. triceps surae, incorporating assumptions concerning dimensions, architecture, force-length and force-velocity relationships of muscle fibers, as well as assumptions concerning dimensions and elastic behavior of tendinous tissue in series with the muscle fibers. The velocity with which origin approaches insertion (V OI) was calculated for m. soleus and m. gastrocnemius using cine film data, and served as input of the model. During the last part of the push-off phase EMG-levels were found to be more or less constant, V OI of m. soleus and m. gastrocnemius rapidly increased, and the plantar flexing moment obtained by solving equations concerning a free body diagram of the foot rapidly declined. A similar decline was observed in the plantar flexing moment obtained by multiplying force calculated with help of the model by estimated moment arm at the ankle. As a result of the decline of exerted force tendon length decreases. According to the model the shortening velocity of tendon reaches higher values than that of muscle fibers. The results of a kinetic analysis demonstrate that during the last part of the push-off phase a combination of high angular velocities with relatively large plantar flexing moments is required. It is concluded that without a compliant tendon m. triceps surae would not be able to satisfy this requirement.  相似文献   

13.
Lateral ankle sprains are common injuries in quick, dynamic movements and are caused by rapid ankle inversion. Ankle braces are used to reduce ankle inversion, while allowing normal plantar and dorsiflexion ranges of motion. Knee injuries, such as anterior cruciate ligament injuries, are also common in dynamic movements. It is important to understand how ankle braces affect injury risk at other proximal joints. There is limited and conflicting results on how ankle braces affect knee mechanics during these types of movements. Additionally, it is unknown if sex differences exist when using an ankle brace. Therefore, the purpose of this study was to determine the effects of a hinged ankle brace and sex during a 45° cutting movement. Three-dimensional kinematics and ground reaction forces were collected using a motion capture system and force plate on ten men and eight women during cutting trials. 2 × 2 repeated measures ANOVAs were used to detect differences in ground reaction forces, as well as knee and ankle kinematics between brace conditions and sex (p < 0.05). The brace condition exhibited greater initial contact ankle dorsiflexion (p = 0.011), decreased peak ankle inversion (p < 0.01), and increased vertical loading rate (p = 0.040). Females performed the cutting movement with less initial contact (p = 0.019) and peak knee flexion (p = 0.023) compared to males. Ankle bracing had no impact on the observed sex differences. Females exhibited decreased knee flexion compared to males, which has been well documented in the literature. The use of an ankle braces reduced ankle injury risk variables while not adversely impacting knee mechanics during a 45° sidecutting movement.  相似文献   

14.
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.  相似文献   

15.
Due to inadequate healing, surgical repairs of torn rotator cuff tendons often fail, limiting the recovery of upper extremity function. The rat is frequently used to study rotator cuff healing; however, there are few systems capable of quantifying forelimb function necessary to interpret the clinical significance of tissue level healing. We constructed a device to capture images, ground reaction forces and torques, as animals ambulated in a confined walkway, and used it to evaluate forelimb function in uninjured control and surgically injured/repaired animals. Ambulatory data were recorded before (D–1), and 3, 7, 14, 28 and 56 days after surgery. Speed as well as step width and length were determined by analyzing ventral images, and ground reaction forces were normalized to body weight. Speed averaged 22±6 cm/s and was not affected by repair or time. Step width and length of uninjured animals compared well to values measured with our previous system. Forelimbs were used primarily for braking (?1.6±1.5% vs +2.5±0.6%), bore less weight than hind limbs (49±5% vs 58±4%), and showed no differences between sides (49±5% vs 46±5%) for uninjured control animals. Step length and ground reaction forces of the repaired animals were significantly less than control initially (days 3, 7 and 14 post-surgery), but not by day 28. Our new device provided uninjured ambulatory data consistent with our previous system and available literature, and measured reductions in forelimb function consistent with the deficit expected by our surgical model.  相似文献   

16.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

17.
Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal's hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.  相似文献   

18.
Information on the internal stresses/strains in the human foot and the pressure distribution at the plantar support interface under loading is useful in enhancing knowledge on the biomechanics of the ankle-foot complex. While techniques for plantar pressure measurements are well established, direct measurement of the internal stresses/strains is difficult. A three-dimensional (3D) finite element model of the human foot and ankle was developed using the actual geometry of the foot skeleton and soft tissues, which were obtained from 3D reconstruction of MR images. Except the phalanges that were fused, the interaction among the metatarsals, cuneiforms, cuboid, navicular, talus, calcaneus, tibia and fibula were defined as contact surfaces, which allow relative articulating movement. The plantar fascia and 72 major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The encapsulated soft tissue was defined as hyperelastic, while the bony and ligamentous structures were assumed to be linearly elastic. The effects of soft tissue stiffening on the stress distribution of the plantar surface and bony structures during balanced standing were investigated. Increases of soft tissue stiffness from 2 and up to 5 times the normal values were used to approximate the pathologically stiffened tissue behaviour with increasing stages of diabetic neuropathy. The results showed that a five-fold increase in soft tissue stiffness led to about 35% and 33% increase in the peak plantar pressure at the forefoot and rearfoot regions, respectively. This corresponded to about 47% decrease in the total contact area between the plantar foot and the horizontal support surface. Peak bone stress was found at the third metatarsal in all calculated cases with a minimal increase of about 7% with soft tissue stiffening.  相似文献   

19.
Knowing the ground reaction forces (GRFs) during walking has various biomechanical applications in injury prevention, gait analysis, as well as prosthetic and footwear design. The current study presents a method for predicting the GRFs in level and incline/decline walking that may be used in various outdoor biomechanics studies geared towards the above applications. The method was developed to predict the complete set of GRFs at walking inclinations of 0°, ±5°, ±10°, ±15°, and ±20°. Plantar pressure insoles were used to obtain inclination-specific, linear regression models based on three periods of gait stance phase, and the model-determined GRFs were compared with those measured from a forceplate. The three periods were determined based on the observed shifting of load-bearing insole sensors from heel to forefoot during walking, i.e., heel-strike, midstance, and toe-off. Six subjects wearing minimalist shoes fitted with plantar pressure insoles containing 99 pressure sensors performed ten walking trials at each of the aforementioned inclinations on an adjustable ramp with an embedded forceplate. Data from contact of the instrumented shoes with the forceplate were used to create linear regressions to transform insole pressure data into a complete set of GRFs. The root mean square error (RMSE) over peak recorded values were on average 10%, 3%, 21% for level walking and 11%, 4%, 23% for ramp walking in the respective anteroposterior, vertical, and mediolateral directions. The multistage linear regression model developed in the current study may be an acceptable option for estimating GRFs during walking in various environments without the restraint of a forceplate.  相似文献   

20.
Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model?s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号