首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological role of ROCKs in the cardiovascular system   总被引:9,自引:0,他引:9  
Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits. Rho GTPase; Rho-kinase; vascular endothelium; contraction; actin cytoskeleton; nitric oxide; statins  相似文献   

2.
MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 μM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC(50) values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts.  相似文献   

3.
4.
Rational design is one of the latest ways how to evaluate particular activity of signal molecules, for example cytokinin derivatives. A series of N(6)-[(3-methylbut-2-en-1-yl)amino]purine (iP) derivatives specifically substituted at the N9 atom of purine moiety by tetrahydropyran-2-yl, ethoxyethyl, and C2-C4 alkyl chains terminated by various functional groups were prepared. The reason for this rational design was to reveal the relationship between specific substitution at the N9 atom of purine moiety of iP and cytokinin activity of the prepared compounds. The synthesis was carried out either via 6-chloro-9-substituted intermediates prepared originally from 6-chloropurine, or by a direct alkylation of N9 atom of N(6)-[(3-methylbut-2-en-1-yl)amino]purine. Selective reduction was implemented in the preparation of compound N(6)-[(3-methylbut-2-en-1-yl)amino]-9-(2-aminoethyl-amino)purine (12) when 6-[(3-methylbut-2-en-1-yl)amino]-9-(2-azidoethyl)purine (7) was reduced by zinc powder in mild conditions. The prepared derivatives were characterized by C, H, N elemental analyses, thin layer chromatography (TLC), high performance liquid chromatography (HPLC), melting point determinations (mp), CI+ mass spectral measurement (CI+ MS), and by (1)H NMR spectroscopy. Biological activity of prepared compounds was assessed in three in vitro cytokinin bioassays (tobacco callus, wheat leaf senescence, and Amaranthus bioassay). Moreover, the perception of prepared derivatives by cytokinin-sensitive receptor CRE1/AHK4 from Arabidopsis thaliana, as well as by the receptors ZmHK1 and ZmHK3a from Zea mays, was studied in a bacterial assay where the response to the cytokinin treatment could be specifically quantified with the aim to reveal the way of the perception of the above mentioned derivatives in two different plant species, that is, Arabidopsis, a model dicot, and maize, a model monocot. The majority of cytokinin derivatives were significantly active in both Amaranthus as well as in tobacco callus bioassay and almost inactive in detached wheat leaf senescence assay. N9-Substituted iP derivatives remained active in both in vitro bioassays in a broad range of concentrations despite the fact that most of the derivatives were unable to trigger the cytokinin response in CRE1/AHK4 and ZmHK1 receptors. However, several derivatives induced low but detectable cytokinin-like activation in maize ZmHK3a receptor. Compound 6-[(3-methylbut-2-en-1-yl)amino]-9-(tetrahydropyran-2-yl)purine (1) was also recognized by CRE1/AHK4 at high concentration ≥ 50 μM.  相似文献   

5.
We have reported that 8-isoprostane stimulated the production of endothelin (ET)-1, a potent vasoconstrictor and critical mediator of chronic pulmonary hypertension, by infant rat pulmonary artery smooth muscle cells (PASMCs), through stimulation of the thromboxane A2 receptor. The aim of this study was to examine the contribution of putative downstream intracellular mediators of thromboxane A2 receptor stimulation to this effect. PASMCs from infant rats were treated with calcium ionophore (A23187), 8-isoprostane, or 8-isoprostane together with inhibitors of tyrosine kinase, protein kinase C, phosphatidylinositol 3-kinase, mitogen-activated protein kinases, or Rho-kinases (ROCK). A23187 had no effect on ET-1 production, excluding raised intracellular Ca2+ as a major contributor. Increased ET-1 production induced by 8-isoprostane was significantly attenuated by the ROCK inhibitors Y-27632 and hydroxyfasudil, but not by inhibitors of the other pathways. 8-Isoprostane also increased membrane binding of RhoA, a major determinant of ROCK activity, and ROCK-II expression through the protein kinase C pathway. These data indicate that the RhoA/ROCK pathway mediates increased ET-1 production by PASMCs, which we speculate may at least partly explain the beneficial effects of both antioxidants and ROCK inhibitors in animal models of chronic pulmonary hypertension.  相似文献   

6.

Background

The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen.

Results

Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion.

Conclusions

The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0039-2) contains supplementary material, which is available to authorized users.  相似文献   

7.
The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite persistent ROCK II and guanine triphosphate-bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II-depleted cells but not those lacking ROCK I. These effects originated in part from distinct lipid-binding preferences of ROCK pleckstrin homology domains. ROCK II bound phosphatidylinositol 3,4,5P(3) and was sensitive to its levels, properties not shared by ROCK I. Therefore, endogenous ROCKs are distinctly regulated and in turn are involved with different myosin compartments.  相似文献   

8.
Arterial hypertension is a multifactorial disease that is characterised by increased peripheral vascular resistance often accompanied by smooth muscle cell hypertrophy and proliferation. Rho kinases (ROCKs) are the most extensively studied effectors of the small G-protein RhoA and abnormalities in RhoA/ROCK signalling have been observed in various cardiovascular disease including hypertension. The RhoA/ROCK-pathway is a key player in different smooth muscle cell functions including contractility, proliferation and migration. Furthermore, there is extensive crosstalk between RhoA/ROCK- and NO-signalling. Therefore, not only ROCK inhibitors but also NO-donators or pleiotropic agents like statins exert their beneficial effects on the cardiovascular system at least in part via Rho/Rho-kinase.  相似文献   

9.
The Rho‐associated (ROCK) serine/threonine kinases have emerged as central regulators of the actomyosin cytoskeleton, their main purpose being to promote contractile force generation. Aided by the discovery of effective inhibitors such as Y27632, their roles in cancer have been extensively explored with particular attention focused on motility, invasion and metastasis. Recent studies have revealed a surprisingly diverse range of functions of ROCK. These insights could change the way ROCK inhibitors might be used in cancer therapy to include the targeting of stromal rather than tumour cells, the concomitant blocking of ROCK and proteasome activity in K‐Ras‐driven lung cancers and the combination of ROCK with tyrosine kinase inhibitors for treating haematological malignancies such as chronic myeloid leukaemia. Despite initial optimism for therapeutic efficacy of ROCK inhibition for cancer treatment, no compounds have progressed into standard therapy so far. However, by carefully defining the key cancer types and expanding the appreciation of ROCK's role in cancer beyond being a cell‐autonomous promoter of tumour cell invasion and metastasis, the early promise of ROCK inhibitors for cancer therapy might still be realized.  相似文献   

10.
Many key cellular functions, such as cell motility and cellular differentiation are mediated by Rho-associated protein kinases (ROCKs). Numerous studies have been conducted to examine the ROCK signal transduction pathways involved in these motile and contractile events with the aid of pharmacological inhibitors such as Y-27632. However the molecular mechanism of action of Y-27632 has not been fully defined. To assess the relative contribution of these Rho effectors to the effects of Y-27632, we compared the cytoskeletal phenotype, wound healing and neurite outgrowth in cells treated with Y-27632 or subjected to knockdown with ROCK-I, ROCK-II or PRK-2- specific siRNAs. Reduction of ROCK-I enhances the formation of thin actin-rich membrane extensions, a phenotype that closely resembles the effect of Y-27632. Knockdown of ROCK II or PRK-2, leads to the formation of disc-like extensions and thick actin bundles, respectively. The effect of ROCK-I knockdown also mimicked the effect of Y-27632 on wound closer rates. ROCK-I knockdown and Y-27632 enhanced wound closure rates, while ROCK-II and PRK-2 were not appreciably different from control cells. In neurite outgrowth assays, knockdown of ROCK-I, ROCK-II or PRK-2 enhances neurite lengths, however no individual knockdown stimulated neurite outgrowth as robustly as Y-27632. We conclude that several kinases contribute to the global effect of Y-27632 on cellular responses.  相似文献   

11.
Despite current advances in therapy, the prognosis of patients with glioblastoma has not improved sufficiently in recent decades. This is due mainly to the highly invasive capacity of glioma cells. Little is known about the mechanisms underlying this particular characteristic. While the Rho-kinase (ROCK)-dependent signaling pathways involved in glioma migration have yet to be determined, they show promise as one of the candidates in targeted glioblastoma therapy. There are two ROCK isoforms: ROCK1, which is upregulated in glioblastoma tissue compared to normal brain tissue, and ROCK2, which is also expressed in normal brain tissue. Blockage of both of these ROCK isoforms with pharmacologic inhibitors regulates the migration process. We examined the activities of ROCK1 and ROCK2 using knockdown cell lines and the newly developed stripe assay. Selective knockdown of either ROCK1 or ROCK2 exerted antidromic effects on glioma migration: while ROCK1 deletion altered the substrate-dependent migration, deletion of ROCK2 did not. Furthermore, ROCK1 knockdown reduced cell proliferation, whereas ROCK2 knockdown enhanced it. Along the signaling pathways, key regulators of the ROCK pathway are differentially affected by ROCK1 and ROCK2. These data suggest that the balanced activation of ROCKs is responsible for the substrate-specific migration and the proliferation of glioblastoma cells.  相似文献   

12.
Apical-domain constriction is important for regulating epithelial morphogenesis. Epithelial cells are connected by apical junctional complexes (AJCs) that are lined with circumferential actomyosin cables. The contractility of these cables is regulated by Rho-associated kinases (ROCKs). Here, we report that Willin (a FERM-domain protein) and Par3 (a polarity-regulating protein) cooperatively regulate ROCK-dependent apical constriction. We found that Willin recruits aPKC and Par6 to the AJCs, independently of Par3. Simultaneous depletion of Willin and Par3 completely removed aPKC and Par6 from the AJCs and induced apical constriction. Induced constriction was through upregulation of the level of AJC-associated ROCKs, which was due to loss of aPKC. Our results indicate that aPKC phosphorylates ROCK and suppresses its junctional localization, thereby allowing cells to retain normally shaped apical domains. Thus, we have uncovered a Willin/Par3-aPKC-ROCK pathway that controls epithelial apical morphology.  相似文献   

13.
Rho-kinase (ROCKs) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. There are two isoforms of Rho-kinase, ROCK1 and ROCK2, and they have different functions with ROCK1 for circulating inflammatory cells and ROCK2 for vascular smooth muscle cells. It has been demonstrated that the RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including contraction, motility, proliferation, and apoptosis, leading to the development of cardiovascular disease. The important role of Rho-kinase in vivo has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia-reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Furthermore, the beneficial effects of fasudil, a selective Rho-kinase inhibitor, have been demonstrated for the treatment of several cardiovascular diseases in humans. Thus the Rho-kinase pathway is an important new therapeutic target in cardiovascular medicine.  相似文献   

14.
Axons fail to regenerate in the adult central nervous system (CNS) following injury. Developing strategies to promote axonal regeneration is therapeutically attractive for various CNS pathologies such as traumatic brain injury, stroke and Alzheimer’s disease. Because the RhoA pathway is involved in neurite outgrowth, Rho-associated kinases (ROCKs), downstream effectors of GTP-bound Rho, are potentially important targets for axonal repair strategies in CNS injuries. We investigated the effects and downstream mechanisms of ROCK inhibition in promoting neurite outgrowth in a PC-12 cell model. Robust neurite outgrowth (NOG) was induced by ROCK inhibitors Y-27632 and H-1152 in a time-and dose-dependent manner. Dramatic cytoskeletal reorganization was noticed upon ROCK inhibition. NOG initiated within 5 to 30 minutes followed by neurite extension between 6 and 10 hours. Neurite processes were then sustained for over 24 hours. Rapid cofilin dephosphorylation was observed within 5 minutes of Y-27632 and H-1152 treatment. Re-phosphorylation was observed by 6 hours after Y-27632 treatment, while H-1152 treatment produced sustained cofilin dephosphorylation for over 24 hours. The results suggest that ROCK-mediated dephosphorylation of cofilin plays a role in the initiation of NOG in PC-12 cells.  相似文献   

15.

Background

Rho kinases (ROCKs) mediate cell contraction, local adhesion, and cell motility, which are considered to be important in cell differentiation. We postulated that ROCKs are involved in controlling embryonic stem (ES) cell renewal and differentiation.

Methodology/Principal Findings

CCE, a murine ES cell, was treated with Y-27632 for 48 to 96 hours and colony formation was evaluated. Y-27632 blocked CCE colony formation and induced CCE to grow as individual cells, regardless of the initial seeding cell density either at 104/cm2 (“high” seeding density) or 2×103/cm2 (“low” density). However, at high seeding density, Y-27632–treated cells exhibited reduction of alkaline phosphatase (AP) staining and Oct3/4 expression. They expressed SOX-1, nestin, and MAP2c, but not βIII-tubulin or NG-2. They did not express endoderm or mesoderm lineage markers. After removal of Y-27632, the cells failed to form colonies or regain undifferentiated state. Silencing of ROCK-1 or ROCK-2 with selective small interference RNA induced CCE morphological changes similar to Y-27632. Silencing of ROCK-1 or ROCK-2 individually was sufficient to cause reduction of AP and Oct3/4, and expression of SOX-1, nestin, and MAP2c; and combined silencing of both ROCKs did not augment the effects exerted by individual ROCK siRNA. Y-27632–treated CCE cells seeded at 2×103 or 6.6×103 cells/cm2 did not lose renewal factors or express differentiation markers. Furthermore, they were able to form AP-positive colonies after removal of Y-27632 and reseeding. Similar to ROCK inhibition by Y-27632, silencing of ROCK-1 or ROCK-2 in cells seeded at 2×103/cm2 did not change renewal factors.

Conclusions/Significance

We conclude that ROCKs promote ES cell colony formation, maintain them at undifferentiated state, and prevent them from neural differentiation at high seeding density. ROCK inhibition represents a new strategy for preparing large numbers of neural progenitor cells.  相似文献   

16.
Several studies suggest that RhoA and RhoC, despite their sequence similarity, have different roles in cell migration and invasion, but the molecular basis for this is not known. Using RNAi, we show that RhoA-depleted cells became elongated and extended multiple Rac1-driven narrow protrusions in 2D and 3D environments, leading to increased invasion. These phenotypes were caused by combined but distinct effects of the Rho-regulated kinases ROCK1 and ROCK2. Depletion of ROCK2 induced multiple delocalized protrusions and reduced migratory polarity, whereas ROCK1 depletion selectively led to cell elongation and defective tail retraction. In contrast, RhoC depletion increased cell spreading and induced Rac1 activation around the periphery in broad lamellipodia, thereby inhibiting directed migration and invasion. These effects of RhoC depletion are mediated by the formin FMNL3, which we identify as a new target of RhoC but not RhoA. We propose that RhoA contributes to migratory cell polarity through ROCK2-mediated suppression of Rac1 activity in lamellipodia, whereas RhoC promotes polarized migration through FMNL3 by restricting lamellipodial broadening.  相似文献   

17.
Herein, we report the discovery of a series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies of these compounds led to the identification of the most potent compound, 3-(3-methoxybenzyl)-6-(1H-pyrrolo[2,3-b]pyridin-4-yl)thieno[2,3-d]pyrimidin-4(3H)-one (8k), which showed IC50 values of 0.004 μM and 0.001 μM against ROCK Ⅰ and ROCK Ⅱ, respectively. In vitro, 8k significantly reduced the phosphorylation level of ROCK downstream signaling protein and induce changes in cell morphology and migration. Overall, this study provides a promising lead compound for drug discovery targeting ROCKs.  相似文献   

18.
The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2.  相似文献   

19.
Signal transduction cascades involving Rho-associated kinases (ROCK), the serine/threonine kinases downstream effectors of Rho, have been implicated in the regulation of diverse cellular functions including cytoskeletal organization, cell size control, modulation of gene expression, differentiation, and transformation. Here we show that ROCK2, the predominant ROCK isoform in skeletal muscle, is progressively up-regulated during mouse myoblast differentiation and is highly expressed in the dermomyotome and muscle precursor cells of mouse embryos. We identify a novel and evolutionarily conserved ROCK2 splicing variant, ROCK2m, that is preferentially expressed in skeletal muscle and strongly up-regulated during in vivo and in vitro differentiation processes. The specific knockdown of ROCK2 or ROCK2m expression in C2C12 myogenic cells caused a significant and selective impairment of the expression of desmin and of the myogenic regulatory factors Mrf4 and MyoD. We demonstrate that in myogenic cells, ROCK2 and ROCK2m are positive regulators of the p42 and p44 mitogen-activated protein kinase-p90 ribosomal S6 kinase-eucaryotic elongation factor 2 intracellular signaling pathways and, thereby, positively regulate the hypertrophic effect elicited by insulin-like growth factor 1 and insulin, linking the multifactorial functions of ROCK to an important control of the myogenic maturation.  相似文献   

20.
Listeria monocytogenes is an intracellular bacterial pathogen that causes life-threatening disease. The mechanisms used by L. monocytogenes to invade non-professional phagocytic cells are not fully understood. In addition to the requirement of bacterial determinants, host cell conditions profoundly influence infection. Here, we have shown that inhibition of the RhoA/ROCK pathway by pharmacological inhibitors or RNA interference results in increased L. monocytogenes invasion of murine fibroblasts and hepatocytes. InlF, a member of the internalin multigene family with no known function, was identified as a L. monocytogenes -specific factor mediating increased host cell binding and entry. Conversely, activation of RhoA/ROCK activity resulted in decreased L. monocytogenes adhesion and invasion. Furthermore, virulence of wild-type bacteria during infection of mice was significantly increased upon inhibition of ROCK activity, whereas colonization and virulence of an inlF deletion mutant was not affected, thus supporting a role for InlF as a functional virulence determinant in vivo under specific conditions. In addition, inhibition of ROCK activity in human-derived cells enhanced either bacterial adhesion or adhesion and entry in an InlF-independent manner, further suggesting a host species or cell type-specific role for InlF and that additional bacterial determinants are involved in mediating ROCK-regulated invasion of human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号